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1. INTRODUCTION AND SUMMARY 

The use of constant-volume balloons (CVB) has proven 
a popular method of measuring atmospheric phenomena. Certain 
questions, regarding the proper application of such balloons 
and the proper interpretation of resulting data', have arisen. 
Thus a need has developed for determining the true capabilities 
of the CVB for 'aeronautical research. This study described in 
this report was de.signed to satisfy this need. 

The initial phase of the study involved a literature 
.survey concerned with CVB. A description of this survey is 
contained in Section 2. 

Examination of the literature revealed the need for a 
more rigorous mathematical treatment of the dynamics of CVB in 
a fluctuating flow field. Accordingly a mathematical model 
was developed which describes the response of the CVB to three- 
dimensional periodic non-homogeneous flow. A description of 
this model is provided in Section 8. 

The mathematical model previously noted was incorporated 
into a digital computer program. Section 4 provides a.descrip- 
tion of this program,which is called BALLOON. 

By means of BALLOON, over 84 numerical runs were con- 
ducted with the NASA/MSFC UNIVAC 1108. These runs produced 
both digital and graphical results as discussed in Section 5. 
Because of the considerable bulk involved, most of the computer 
plots are not included. They are available in a separate 
document. [ll . 

Analysis of the numerical results obtained, combined 
with a study of the work of other investigations has resulted 
in certain observations and conclusions. Section 6 contains 
such observations and conclusions. Because of limitations in' 
the scope of the investigation these conclusions are not con- 
sidered to be completely general with regard to CVB behavior. 

1 



At the same time they do proiride some insight into the nature 
of the problem of properly interpreting data collected by CVB's. 

References cited-and included in Section 7. In 
addition there .are., 16 appendices containing supplementary 

I material. Of speciai significance is a first-order pertur- 9 
bation analysis contained in Appendix R. 

I’ 

/ 
/ 

/’ 
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2. LITERATURE SURVEY 
.-. ,.. . . 

The survey of literature consisted,of three sepayate, ,, ., 
activities. The first involved an inspection of existing 
balloon literature from the files of the NASA Contracting 
Officeris .Representative, 

':. 
1\ Dr. George H. Fichtl, representing '.. . 

approximately 600 papers and report';. Such an'inspoction &- ., "I" 
vealed 60 pertinent documents. The second activity involved"' " 
utilization of the computerized information retrieval system 
at Redstone Scientific Information Center. The third activity 
consisted of a personal review of journals pertaining to mete- 
orology and atmospheric physics back to 1969. Because Dr. 
Fichtl's files appeared to adequately cover all earlier years, 
the personal review did not proceed back to any earlier journals. 
The journals review included: 

Journal of Meteorology 
Journal of the Atmospheric Sciences 
Journal of Applied Meteorology 
Quarterly Journal of the Royal Meterological Society 
Journal of Geophysical Research 
Beitrage z'ur Physik der freien Atmosphure 
Journal of Japanese Meteorology Society 

In the process of reviewing the literature some distinc- 
tion had to be made between different types of balloons. Clearly 
not all literature concerning balloons is pertinent to the study. 
At the same time it was recognized that there exist a number 
.of types of balloons which are closely related or nearly equi- 
valent to CVB's. These include tetroons, constant-altitude 
balloons, constant level balloons, transondes, horizontal- 
sounding balloons and certain types of super-pressure balloons. 
A description of each of these types is provided in Appendix A. 
The decision was made to include in the survey literature 
pertaining to all of these types of balloons so long as the 
application of the balloon was consistent with the general 
application of CVB's. 

3 



The results of the survey revealed four categories of 
articles or reports. The first category is concerned with the 
general theory, design, and operation of constant-volume 
balloons as discussed in subsection 2.1. The second category, 
which is described in subsection 2.2,. is concerned with the use 
of constant-volume balloons to determine the mean wind velocity. 
The third category, which is of primary interest in the current 
study, is similar to the second except that, in addition to the 
mean wind velocity, some measurement of turbulent fluctuati,ons. 
is recorded. This category is presented in subsection 2.3. 
Within the third category of literature, it is appropriate to 
recognize two subcategories labeled 3-A and'3-B. In subcategory 
3-A, the measurements of turbulent phenomena are presented in 
their simplest form, involving variation with respect to spatial 
position or time. In 3-B such data may be present, but in 
addition, some spectral analysis or correlation of such data 
is provided. Clearly subcategory 3-B is of special interest 
in the current investigation. The fourth category which is 
presented in subsection 2.4, pertains to theoretical studies 
of the motion of constant-volume balloons and related objects 
immersed in a turbulent flow field,and also to the theory of 
atmospheric turbulence. 

2.1 Category 1 Literature - General Theory, Design and 
Operation of Constant-Volume Balloons 

For the current investigation, literature describing 
the general characteristics of constant-volume balloons (CVB) 
was not of primary importance. At the same time such literature 
was of some value in providing background material and in 
developing an understanding of the various uses to which the 
balloons have been put. More than seventy papers, reports, and 
articles [2-751 were identified in this category. Some of 
these also contained information pertinent to other categories 
as discussed in other subsections. For the sake of brevity 
the discussion of Category 1 literature which follows will be 
limited to material of special significance. 
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The first CVB investigation was reported over sixty- 
-five years ago by Ley [21 and concerned the use of "balanced 
pilot balloons." The objectives of the study were to obtain 
a better picture of: 

"(a) Periodic oscillations of stratum as apart from 
variations due to altitude. 

(b) Vertical currents or rising winds. 
(c) Local eddies or other phenomena." 

These objectives correspond quite closely to those of more recent 
studies. Ley in a separate article [31 also reported on an 
automatic valve for maintaining such pilot balloons at a 
constant altitude. 

The first apparent use of CVB's in conjunction with 
radio transmitters was reported by Akerman and Piccard [41 
shortly prior to World War II. During the fifteen years.follow- 
ing the war a number of articles appeared describing various 
methods of improving balloon performance 15-171 . The initial 
works of Lally 114,161 and Angel1 [151 are included in this 
group as are some of the works of Hopper [ 7,13,171 and Laby 

r13,17 I. 

During the ten-year period from 1961 through 1970, more 
than 40 category 1 articles were written [18-611. One of the 
most useful of these was a summary of the state-of-the-art in 
1961 written by Angel1 1181. The introduction of Mylar as a 
material for the balloon skin was probably the most significant 
development in CVB operations in this period. Both the Ghost 
balloon experiment [26,27,29,30,31,36,39,43,50,53,57,581 and 
t,he EOLE experiment [28,34,35,38,44,54,571 began operations 
during this period. 

Category 1 literature during the period 1971 - 1975 
consisted of thirteen articles [62-741. Several of these 
were concerned with the EOLE experiment [62,66-681. One of 
the most significant articles was concerned with tetrocn drag 
coefficients over a range of Reynolds number from 10 4 to 
6 x105 nil. Typical drag coefficient values were .73. 
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2.2 Category 2 Literature - The Use of the- CVB's to Measure 
the Horizontal Mean Wind 

The literature survey uncovered 68 articles, reports, 
and papers dealing with the use ,of CVB's to measure the hori- 
zontal mean wind velocity. Of these, 23 also contained category 
1 material, including the initial work of Ley, and have already 
been noted [2,12,15,17,18,20,21,26,29,34,43,44,48,53,55,'~7-59, 
63,68,69,72,74]. The remaining 42 papers [75-117) cover a 
twenty-five year span (1950-1974) and describe various programs 
in which CVB's were utilized to track the mean horizontal wind. 
One of these papers [80] was not actually so much concerned 
with measuring the mean wind as with utilizing such a wind to 
send "balloon bombs" from Japan to the United States during 
World War II. A number of investigations involved flights over 
urban areas [82-84,92,101,,105,109,114] while others dealt with 
the GHOST program [87,89-91,94-96,100,117] and still others 
with the EOLE experiment [98,99,102,111,112,116,117]. Balloon 
trajectories at various altitudes were analyzed including 500mb 
[85], 200mb [116], 50mb [86], and 50km [lOS]. Clustering pheno- 
mena were studied in some cases [85,97] while the relationship 
between the dispersing of CVB's and turbulent diffusion in the 
atmosphere was investigated in others [102,104,115]. A number 
of studies were concerned with balloon trajectories in the 
planetary boundary layer [97,103,109,110]. Still others were 
directed toward measurements of rain clouds and thunderstorms 
[93,113]. 

In essentially all the studies noted the basic assump- 
tion was made that the mean motion of the balloon corresponded 
to the mean motion of the atmosphere. 

2.3 Category 3 Literature - The Use of CVB's to Measure 
'Turbulent Fluctuations 

Category 3 literature can be divided into two groups, 
as noted previously. All literature which contained some 
measurement of turbulent fluctuations, either vertical or 

6 



horizontal, was considered Sub-Category 3-A if it did not provide 
for some form of spectral analysis or correlation of the fluc- 
tuations. Sub-Category 3-B consisted of all literature which 
contained both measurement of fluctuations and spectral analysis 
or correlation of the data. 

2.3.1 Sub-Category 3-A Literature -_ 
Correlation 

- Without Spectral Analysis of 

Twenty-two different studies provided basic measurements 
of turbulent fluctuations ~2,18,20,25,74,75,83,92,~08,110,111, 
112,115,118-1261. The majority of these studies were concerned 
with vertical fluctuation ~2,18,20,25,74,83,92,108,110,115, 
120,122-1261. The data were generally presented in the form 
of a plot of altitude, temperature or pressure versus time. 
The period of oscillation were generally relatively short, being 
measured in minutes. 

Ten studies provided measurement of horizontal fluctua- 
tions [75,110-112,118-121,124,1251. As with vertical fluctuation 
the data were generally presented in the form of a plot of 
displacement versus time. Two separate groups could be identi- 
fied. The first of these was concerned with large-scale fluc- 
tuation with periods of oscillation measured in hours or even 
days [111,1121 while the second group dealt with small-scale 
fluctuations with periods of oscillation measured in minutes 
[110,118-1211. 

. 
Sub-Category 3-A literature contains a wealth‘of.information 

but time and manpower limitations precluded any attempt to 
carry out any detailed analysis of the measured data. 

2.3.2 .Sub-Category 3-B Literature - With Spectral Analysis or 
Correlation 

The most significant group of literature bearing on the 
current study consisted of twenty-one articles which provide 
both turbulence measurements and spectral analysis or correla- 
tions of measured data [68,72,78,84,127-1431. It was appropriate 
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to identify two groups within Sub-Category 3-B. In the 
first of these, the authors generally provided turbulence measure- 
ments, based on tracking the CVB, and some analysis of the 
resulting data [68,72,78,84,127,129,130,135,136,138-141,143]. 
These types of analyses produced Lagrangian or quasi-Lagrangian 
representations of turbulence. It is important to note that 
a wide range of frequencies and wave numbers were covered in 
these studies. A number of the studies were primarily concerned 
with low frequency oscillations (.OOl to 0.1 cycles/hr) of 
the horizontal winds [68,130,139,140,143]. The remaining dealt 
with intermediate to high frequency oscillations (0.1 to 100 
cycles/hour) of the vertical winds [72,78,84,127,129,135,136, 
1381. In several of these cases the natural frequency of 
oscillation was detected [72,84,129,136]. One study utilizing 
neutrally buoyant floats for measuring vertical velocity 
fluctuations in the ocean (in the spectral range from 10D2. to 1 
cycle/hour), also detected the natural frequency of oscillation 
[1411. 

The seven remaining Sub-Category 3-B papers [128,131-134, 
137,142] were especially pertinent to the current investigation 
because in addition to turbulence measurements and analysis 
based on the motion of CVB's they also provide corresponding 
data and analysis based on measurements taken at a stationary 
point. Thus both Lagrangian (or quasi-Lagrangian) and Eulerian 
descriptions of turbulence were available for comparison. 

The first of these studies is especially noteworthy 
because of its completeness. Gifford [128] calculated the 
vertical velocity energy spectra over the range from 3 to 200 
cycles/hour at a height of 300 feet based on measurement, by 
fixed anemometers, CVB's and gust equipment mounted aboard an 
airplane. He demonstrated that in terms of the frequency, 
(corresponding to the spectral maxima), the data could be 
correlated by the relation 

w = 52; + k cl (2-l) 
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where 

w = Eulerian frequency (measured by the fixed anemometer) 
1 

RI+ 
= (quasi) Lagrangian frequency (measured by the CVB) 

k = wave number (measured by the airplane) 

Ii1 = mean wind velocity', 

Angel1 and Pack .[131], in a study of low-level CVB 
.flights from Wallops Island, obtained measurements of vertical, 

longitudinal, and transverse fluctuations. Based on such measure- 
ments they calculated values of transverse velocity variance 
and transverse turbulence intensity at altitudes from 2500.- 
3000 feet. They provided a comparison of such values with 
Eulerian values (obtained at heights from 6 to 300 feet) and 
with other Lagrangian values (obtained at altitudes from 1000 
to 3000 feet). In general the values of Lagrangian variance 
and intensity obtained by Angel1 and Pack were less than the 
corresponding Eulerian values and were also less than the other 
Lagrangian values. Because the mean wind velocities were not 
'provided and because of differences in height at which the 
various measurements were obtained, it is difficult to draw 

I quantitative conclusions from these comparisons. 

Angel1 [132] in another study carried out an analysis 
of the trajectories of CVB's launched from Cardington at 
altitudes ranging from 1200 to 4200 feet. Based on measurement 
of vertical fluctuations, vertical velocity spectra were 
derived extending from .Ol to 1.0 cycles/minute. The spectral 
peaks of these quasi-Lagrangian spectra were then compared 

,with corresponding peaks from Eulerian spectra, derived from 
measurements by wind vanes attached to a barrage-balloon cable 
at heights ranging from 600 to 3500 feet. The ratio, B, of the 
frequency for the Eulerian spectral peak to the frequency for 
the Lagrangian spectral peak was computed and tabulated. Values 
of B ranged from 1.1 to 8.5. An approximate correlation of B 
with turbulence intensity was developed. 
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Kao and.Bullock 11331 performed a comparison of 
Lagradgian and Eulerian correlations and energy spectra of 
geostrophic velocities. The frequency range for the spectra 
extended from .OOl to .07,cycles/hour. The..curves for the 
.Eulerian'auto correlation coefficients of both horizontal 
velocity componentsresembled their Lagrangian counterparts, 
tifit'displayed larger integral time scales. The Eulerian velo- 
city spectra also resembled the Lagrangian but were shifted 
toward;lower frequency. The value of B based on the ratio of 
the integral time scale was 0.53. 

In a separate paper Kao .[1341 computed and analyzed the 
Eulerian and Lagrangian autocorrelations and energy spectra of 
large-scale turbulent motion at the 300 mb level. The results 
were similar to those presented in the preceding study. The 
frequency range was the same and the same resemblance of the 
Eulerian autocorrelation curves and spectra to their Lagrangian 
counterparts was again observed. The value of B was found to 
be 0.33. It is important to note that the Lagrangian values 
were based on data collected by Angel1 [151 from CVB flights 
from .Japan.to the United States while the Eulerian values were 
based on data collected by Kao over Salt Lake City. The mean 
wind speeds were not equal in the two experiments. 

Angell, Pack, Hoecker, and Delver [137] performed a com- 
parison of Lagrangian and Eulerian time-scales based on CVB flights 
p,ast a 460 meter tower in Nevada equipped with a bidirection wind 
vane. The range of frequencies extended from ~~0003 to .Ol cycles/ 
sec. Based on the frequencies corresponding to the spectral peaks, 

values of 6 from 1.5 to 4.7 were obtained. A limited correla- 
tion of $ as a function of turbulence intensity was developed. 

In a closely related study, Angel1 1142 I ,calculated the 
Lagrangian and Eulerian time scales based on CVB flights past 
a 460-meter television tower near Oklahoma City. The time scales 
were based on the spectral 'peaks of composite .Lagrangian and 
Eulerian spectra with a frequency range from .OOOl to 1.0 
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cycles/second. Values of B ranged from 2.4 to 13. A&e11 
suggested that the presence of an urban area might reduce the 
Lagrangian time scale, thus causing larger values of B. Corre- 
lation of 8 with turbulence intensity was demonstrated to a 
limited degree. 

2.4 Category 4 Literature - Theoretical Studies of CVB's 
and Other Bodies Immersed in a Turbulent Flow Field --..-_--- :-..- .- -- .-- ..- 

Many of articles, papers, and reports already described 
also provided some theoretical treatment regarding the behavior 
of CVB's [2,20,22,46,58,65,72,72,97-99,102,103,119,122,124, 
'126,127,136]. Some of these dealt with predicting the expansion 
of the balloon due to pressure differences and predicting the 
equilibrium altitude [58,65,72]. Others dealt with predicting 
the natural frequency of vertical oscillation for the CVB and/or 
an'air parcel [20,58,72,127,136]. Still others were concerned 

*with the response of the CVB to oscillations in the flow 
field [22,46,97,126]. Two papers dealt with the numerical 
simulation of the dispersion of CVB [98,991, while two others 
were concerned with relating balloon dispersion to atmospheric 
diffusion [102,119]. The behavior of CVB's in the vicinity 
of mountains was the subject of two other studies [122,124]. 

Much of the remaining Category 4 literature was concern- 
ed with the behavior of a body immersed in a fluid [144-1673. 
One of the earliest treatments of this problem was that by 
Bassett 11441, who took into account transient viscous effects. 
For the case of low Reynolds numbers, corresponding to small 
particles, a sizeable number of studies have been performed 
[145-1541. These studies generally involved particle densities 

which were much greater than the fluid density and thus differed 
significantly from the CVB problem. The rigor with which the 
governing equations were derived, however, proved useful in 
establishing the.governing equations for CVB motion. Two 
other papers [155,156] dealt with the behavior of bubbles in 
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fluids, when the density of the bubble is much less than the 
density of the.fluid. The basic question of the natural vertical 
oscillation in' a stratfied fluid has'been addressed in 'a number 
of studies [20,58',72,127,1361 as previously noted. In addition 
to these, the original work of Brunt [1571,for vertical. 
oscillations of an air Parcel in the atmosphere,and the work 
of Larsen 11581,for a neutrally buoyant sphere oscillating in 
a stratified fluid,are worthy of note. 

Clearly the most relevant studies involving immersed 
bodies were those dealing with balloon motion [159-1671. Two 
papers [161,1631 were especially pertinent. The paper by Hirsch 
and Booker [161] dealt with the response of superpressure 
balloons to vertical air motions. In developing the governing 
equation for the balloon response, however, the authors 
apparently neglected apparent mass and pressure gradient 
effects as well .as the Bassett terms. In addition the equations 
describing the motions of the air and the balloon, as presented 
in the paper, appear erroneous. For these reasons the resulting 
balloon trajectories are of questionable value. 

The paper by Hanna and Hoecker 11631 was concerned with 
the response of constant-density balloons to sinusoidal varia- 
tions of vertical wind speeds. The equation governing the 
balloon motion was derived with more rigor than noted above, but 
several important assumptions and/or simplifications were made 
which were not clearly stated. First, the follow-the-fluid- 
particle total derivative was assumed identical to the follow- 
the-balloon total derivative. Second the Bassett term was 
neglected. The first assumption is valid because the authors 
considered only a periodic velocity field, which was spatially 
homogeneous. The second simplification appears acceptable for 
large Reynolds numbers. The authors presented dimensionless 
plots for calculating phase lag and amplitude response as a 
function of the properties of the atmosphere and the balloon. 
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It is important to note that the authors,did not predict any 
frequency,,shift of the balloon motion with respect to the air 
motion.- 

In addition to.literature dealing with the behavior of 
immersed bodies,. certain other Category 4 literature was identi- 
fied. This included certain studies dealing with CVB trajectories 
[168-1703. .Also, a number of import$nt references dealing with 
atmospheric turbulen,ce [171-1801. Especially useful in this 
regard were the'works of Lumley and Panofsky 11751 and Slade, [176j. 
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3. ANALYTICAL DEVELOPMENT 
I I' I, : .- ;- 

In order to gain a better understanding of the behavior 
of a constant-volume balloon immersed in a flow'field, a,math,e- > 
matical model has been developed based on the appropriate 
governing,equations. The equations describing the balloon 
motion..and the fluid velocity field are:presented in subsection <. 
3.1. These equations are presented in both dimensional and 
dimensionless form. By means of dimensional analysis, as des- 
cribed in subsection 3.2 certain important dimensionless groups 
can be identified, which are useful in presenting results with 
more general application. 

As an alternative method of treating the problem, a 
first-order perturbation analysis of a perfectly' responding CVB 
has been performed as discussed in subsection 3.3. 

3.1 Governing Equations for Balloon Motion 

The governing equations for the motion of a balloon 
submerged in a turbulent flow field consist of the equations 
for the conservation of momentum of the balloon coupled with 
the equations for conservation of momentum of the fluid. 

3.1.1 Conservation of Momentum Equations for the Balloon 

The conservation of momentum equations were originally 
derived for small Reynolds numbers (>O.l) as discussed in 
Appendix B. Based on the derivation provided in that appendix, 
but without the assumption of low Reynolds numbers, the conser- 
vation of momentum equations for a balloon can be written as 

dV; d(vi-ui) 2 
m.r+m =+p (gi-vi,I;-slcD+ -z * 

a dt ax 
i 

t 

:. 
:. 

+ mgGi3 - $ pD2 X’TIV -J 

d(vi-ui) 
dt' 

c &+ 

(3-l) 

,If viscous stresses in the fluid are neglected, 

Dui 
- i3 - ' Dt (3-2) 



A combkation of Equations (3-lj and (3-2) yields 

dYi 
m dt+ 

= 

d(Vi - Ui). 
m a dt 

$ 6. (Ui - viq; - C./CD $ - yj (bgQ3 - p 2, 

Rearrangement yields 

dvi 
(m + maI dt 

2 
= + p (Ui’Vi) I&Gl.c, + DUi + (ma: +.!&jj 

+m a (vj-uj) 2 - (1 - P/u) w 'i3 

3 -- 2 PD2 d-- IN 
r 0 

d(vi-ui) dt' 

Division by Vu A2 yields 
D 

dt' 
4 t-t' 

(3-3) 

(3-4) 
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- (1 - p/a) 

At/D d(Vi/A - Ui/A) 
-,d(A-L'/D) d(At'/D) 

d At/D - At'/D (3-5) 

The following relations hold: 

m = uV 

m a =&Iv 

and 
13 V=-ITD .6 

(3-6) 

(3-7) 

(3-8) 

With these identities Equation (3-5) can be writtell 
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I 
where 

1 

.’ 

B .= P/U 
%  = vi/A 
si = ui/A 
i = At/D ” (3-13) 

5 =:' xj/D " 
.’ ’ 

it f @ /A2 

3 = v'/(AD) 

,. (3-10) 

(3-11) 

,' (3-12) 

I (3-14) 

(3-15) 

(3-16) 

Division.by (w)yields 

+ 2;. LL 
2 ( > 2+ij 

(Cj -iij) ax- '% 2(1-c) B 6i3 
j 2+yj 

d (+,-tii) 

dt' 
dz' 

J i - 5 (3-17) 

Now the drag coefficient CD can be approximated by the relation 

(Ro < IQ;') (3-18) 
, 

where < _ 

CDR = .5 (3-19) 
j ,, '. 
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Re= 

A~ombination of Equations (3-17), (3-18),gnd (3-20) yields 

+- 2" 

- 18 (*)G 

+-ij ( > 2+5 
(C. - iij) .!Z!i _ 2 (1 - 6) 

J a%. J 2+6 

0 t - t"l (3-21) 

Further development of' the dimensionless -form of the e'quation 
is provided in Appendix C. 
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3.1.2 Mathematical Model for the Flow Field 

The equations governing the motion of fluid are commonly 
.referred to as the Navier-Stokes equations. Although numerical 

solutions of-these equations are possible, such a procedure is 
beyond the scope of the current study. Accordingly a simple 
mathematical model was developed representing a periodic three- 
dimensional flow field which conserves mass, as described in 
Appendix D. The final dimensional form of the model is: 

u.= ii 1 l 6il + A sin (< - wt + 0i) (3-22) 

where 

5 = k (xi + x2 + x3) (3-23) 

81 = 0 

02 = 21~/3 

93 =-27r/3 
I 

(3-24) 

It is important to note that the flow field model is three-dimensional 
and does contain a mean translational velocity.* To increase 
the generality of the model it can be cast in dimensionless 
form as described in Appendix E. In such fhrm the model can 
be written: 

U. 
1 = Gl bil + sin (s - ;jZ + gi) (3-25) 

where 

U. 
1 

= ui/A (3-26)' 

$ i fillA (3-27) 

,* These two features of the flow field model distinguish it from 
the model of Hanna and Hoecker [1631 who, as already noted 
in Section 2.4, employed a model which contained no mean trans- 
lational motion and was spatially homogeneous. 
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5 = k (x1 + i2 +.x3) 

i =kD 

i i = x/D 

w = wD/A 

(3-28) 

(3-29 > 

('3-30) 

(3-31) 

(3-32) t = At/D 

3.2 Dimensional Analysis 

Inspection of Equation (3-21) reveals certain dimen- 
sionless groups. As shown in Appendix C these groups can be 
written as: 

L1 = 2aP+ p 

L2 = 2oc+ p 

12 v 
L3 = AD 

L4 .= i 'DR 

2 (g/R-y)D2 
L5=Tg A2T 

0 

L6 =6 dw 

A comparison of Equations (3-35) and (3-38) reveals 

L6 = J3L3/" 

For a CVB the balloon density is essentially equal to 
atmospheric density. Thus, 

(3-33) 

(3-34) 

(3-35) 

(3-36) 

(3-37) 

(3-38) 

(3.-39) 

the 
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L1 II l/3 

and 9% 

L2 : .1/3 (3-41) 

For simplicity the balloon is assumed to have a spherical 
shape. For this case 

CDfi ,1/2 (3-42) 

and 

L4 = l/4 ('3-43) 

Thus the six dimensionless groups are reduced to two: L3 and 

L5' Furthermore, the dimensionless group, L3, can be approxi- 
mated as: 

12vo 
L3 .v AD (3-44) 

where yc = kinematic viscosity at the equilibrium altitude. 
This ,parameter is clearly the reciprocal of a type of Reynolds 
number as shown in Appendix F. It is important to note that the 
two dimensionless groups, 12 vG/(AD) and z g (g/R - u)D2/(A2T,) 

3 
are essentially constant for any given balloon problem and appear 
sufficient (to first-order accuracy) for characterizing the balloon 
motion. At the same time, the six original dimensionless groups 
are not truly constants and the numerical solution of Equations 
(3-21) described in Section 4, has allowed for the actual.variation 
of these groups to achieve higher-order accuracy. 

Examination of Equation (3-25) indicates that the 
flow field model contains five dimensionless parameters: zl 
Fi, %., 3, and 2. 1 Two of these, xi and 2, represent the balloon 
coordinates in space and time as obtained from the solution to the 
equation governing the balloon motion, and thus these two parameters 
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The true significance of Equation (3-45) can best be understood 
in terms of certain examples as presented in Appendix H. The 
example based on Taylor's Hypothesis is especially noteworthy.. 
For this case the relation between the two spectra becomes 

., 

3, L(TAYLOR)(" x3O) = @E(TAYLOR)(K; x30)dK (3-48) 

According to Equation(3-48) the quasi-Lagrangian power spectrum 
is simply a spike at n=O, and is thus independent of the shape 
of the Eulerian space-time power spectrum. It therefore appears 
according to the first-order perturbation analysis, that the 
quasi-Lagrangian power spectrum, obtained from observing the 
balloon motion, could not be used to describe the Eulerian 
spectrum, if Taylor's Hypothesis holds. 
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4. COMPUTER PROGRAM BALLOON 

The equations presented in Section 2 were incorporated 
into a digital computer program entitled "BALLOON". Essentially,. 
the program utilizes a fourth-order Runge-Kutta technique to 
integrate the differential equations governing the balloon 
motion. .The'program consists of a driver routine (MAIN); 9 
subroutines (GEOMET, INTEG, ACCEL, PROPTY, BUOYNT, APARNT, DRAG, 
BASSET, and POTFLU); and 2 functions (DVAL and MREF). The 
basic orginiiation of BALLOON is indicated in Figure 4-l. " ': 

A copy of the source program is contained in Appendix K. 
A description of each subroutine or function is contained in 
Table 4-l. In subsection 4.1 an explanation of all input para- ,, 
meters is provided including the input format. A description 
of the output is contained in subsection 4.2. 

4.1 Inputs 

All inputs to the program are read in through MAIN. 
These inputs can be divided into two segments or blocks. To 
facilitate explaining the sequence and format for each input 
item, the actual FORTRAN statements (both READ and FORMAT) 
associated with the inputs are provided as part of the discussion 
which follows. 

4.1.1 Block #l Inputs 

The first set of inputs consists of data setting up 
certain initial parameters. The form of the input is as follows: 

READ (5,7002) NNN 
READ (5,7001) BCDX,BCDYl,BCDY2,BCDY3,FLDYl,FLDY2,FLDY3 
READ (5,100) G,X,K,THETA,UB,V 
READ (5,100) A,QMEGA,SIGMA,D,MUREF,TEMREF,T,TLIM,DELTAT, 

*TEMPO,PO,TEMLAP,R,X30 
100 FPRMAT (8E10,3) 

7001 F@RMAT (12A6,8X) 
7002 FPRMAT (12) 
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MAIN I 
ACCEL I 

I 
I 

. . I l I I I 

PROPTY BUOYNT APPRNT DRAG BASSET 

I 

I 

II 

I 

MREF POTFLU DVAL 

c . sAIaa2S 

Figure 4-l. Organization of Balloon Program 
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Table 4-l 

Name Purpose 

ACCEL Calculates acceleration of 
balloon 

APPRNT. Calculates forces due to 
apparent mass and pressure 
gradients in the fluid 

BASSET 

BUOYNT 

Calculates Bassett force 

Cklculates force due to 
buoyancy 

DVAL Calculates correction to 
convection term due to 
difference in balloon and 
fluid velocities 

DRAG 

GEOMET 

Calculates drag 

INTEG 

Calculates time-indepen- 
dent geometric factors 

.'... 
Performs numerical 
integration 

MAIN Serves as driver and 
provides for input and 
output 

MREF 

POTFLU 

PROPTY 

Summary of Subroutines and Functions in BALLOON 

Calculates viscosity as 
a function of temperature 

Calculates flow field 
derivatives 

Calculates temperature 
and density as a function 
of altitude 

Called by Calls Up 

INTEG APPRNT 
BASSET 
BUOYNT 
DRAG 
PROPTY 

ACCEL DVAL 
POTFLU 

ACCEL DVAL 

ACCEL 

APPRNT 
BASSET 

ACCEL 

MAIN 

MAIN 

PROPTY 

APPRNT 

ACCEL 

ACCEL 

GEOrjrET 
INTEG 

MREF 
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Table 4-2 provides a definition of each input item.. Notice should 
be taken than the table is arranged in the s@e'order as the'items 
are read. \. 

4.1.2 , Block #2 Inputs 

The second set of data occur in the following form: 
READ (5,lOl)XD(2),XD(5),BCDX(ll),BCDX(l2),T,TLIM,DELTAT,IDT,IDS 

101 F@RMAT (2E10.3,10X,2A6,8X,3F5.0,215) 

The data in Block #2 are somewhat redundant of.Block #l data. 
This re,dundancy results from certain modifications to the program 
to permit dimensionless results and to provide for multiple cases 
to be run in sequence. The meaning of each Block #2 input is 
provided in Table 4-3. As before, the items in the table are list- 
ed in the same order as they are read into the program. One 
set of these inputs must be provided for each case to be run 
in sequence. 

4.2 outputs 

All outputs to the program occur in MAIN: These outputs 
can be divided into 4 blocks. As with the description of in- 
puts, to aid in explaining the sequence and format of each 
output item, the actual FORTRAN statements (both WRITE and 
FORMAT), associated with the outputs are provided as part of 
the discussion which follows. 

4.2.1 Block #l Outputs 

The first output set occurs in the following form.: 

WRITE(6,9004) A,B,C 
9004 F@RMAT(///lOX,lP3El2.4) 

The variables A, B, C, refer to the amplitudes of the ul, u2 
and u3 velocity components. The variable A is read in; but' 
B and C are computed. Sample values of this output is included 
in Appendix L. 
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Table 4-2 

Variable 

NNN 
BCDX .' 
BCDYl 

BCDY2 

BCDY3 

FLDYl 

FLDYB 

FLDY3 

G 
X 
K 
THETA 

UB 
V 
A 
OMEGA 
SiGMA 
D 
MUREF 
TEMREF 
T 
TLIM 
DELTAT 
TEMPO 
PO 
TEMLAP 
R 
x30 

I  

Definitions of Block #l Inputs 

Meaning 

The number of different cases to be run in sequence" 
alphanumeric label for abscissa of all plots 

.alphanumeric label for ordinate of first plot 
(normally xi -component of velocity) 
alphanumeric label for ordinate of second plot 
(normally x2 -component of velocity) 
alphanumeric label for ordinate of third plot 
(normally x3-component of velocity) 
alphanumeric label for ordinate of fourth plot 
(normally x1 -coordinate of balloon) 
alphanumeric label for ordinate of fifth plot 
(normally x2 -coordinate of balloon) 
alphanumeric label for ordinate of sixth plot 
(normally x3 -coordinate of balloon) 
gravitational acceleration vector 
position vector for initial position 
wave number vector for the fluid 
phase angles for the components of the fluid 
velocity model 
initial fluid velocity vector 
initial balloon velocity vector 
fluid wave amplitude for x1 direction 
Eulerian frequency for the fluid 
balloon density 
balloon diameter 
reference dynamic viscosity coefficient 
reference temperature 
initial time of balloon fluid 
final time of balloon flight 
time step for numerical integration 
temperature at altitude x3o 
pressure at altitude x3o 
temperature lapse rate 
gas constant 
initial balloon altitude 
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Variable 

xw2) 

XD(5) 

BCDX(ll) 1 
BCDX(12) 1 

T 

TLIM 

DELTAT 

IDT 

IDS 

Table 4-3 

Definitions of Block #2 Inputs 

'Meaning 

dimensionless-wave number, k 

dimensionless frequency, ij 

alphanumeric label to permit identifying each 
run by a "test" caption 

initial time of balloon flight 

final time of balloon flight 

time step for numerical integration 

number of integration time steps between output 
data generations 

factor for increasing TLIM (final time = IDS*TLIM) 
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4.2.2 Block #2 Outputs 

The second set of output provides a label for each case 
and provides a list of most inputs in the following form: 

WRITE(6.0915) BCDX(ll),BCDX(12),(XD(L2),L2=1.5) 
WRITE(6,INPUT) 

9015 FpRMAT(lH1,25X,'TEST CASE'BAG//' DIMENSIPNLESS GR$Z)UPS'//' N7='1PEl 
.12.4/l N8='E12.4/ ' N9='E12.4/' NlO='E12.4/' Nll='E12.4) 

The definitiop of all of these items are provided in Tables 4.2 :! 
and 4.3. A sample set of this output is included in Appendix.L. 

4.2.3 Block #3 Outputs 

The form of this output is as follows: 

WRITE(6,9002) 
WRITE(6,9003) ((WRA(I,J),J=l,ll),I=1,5O) 
WRITE(6,9008) 
WRITE(6,9009) ((WRB(I,J),J=l,6>,1=1,50) 
WRITE(6,9006) ' 
WRITE(6,9007) ((WRC(I,J),J=l,l7,1=1,50) 

9002 FORMAT('1 TIME SCALED TIME SCALED ATMPSPHERIC 
1SCALED BALLp@N VELPCITIES VELPCITY RATI@S,//) 

9003 F~RMAT(1X,OPF8.2,1P1OEll.3) 
9008 FpRMAT('1 TIME SCALED TIME X Y 

1 ' /.I) 
9009 F~RMAT(lX.OPF8.2,lPSsE11.3) 
9006 FpRMAT('1 TIME SCALED TIME FDRAG/FBUgY 

1 FAPl/FBASS FAP2’//) 
9007 FQ)RMAT(1X,OPF8.2,1PlOEll.3/2OX,lP6Ell.3) 

Basic data describing the computed wind and balloon motion are 
stored in the fields WRA, WRB, and WRC. The WRA field provides 
a tabulation of wind and balloon velocity as a function of time. 
The WRB field contains the balloon coordinates and the Reynolds 
number as a function of time. The WRC field contains a tabu- 
lation of the various forces acting on the balloon as a function 
of time. Sample values of block #3 data are included in . 
Appendix L. 

4.2.4 Block #4 Outputs 

This output set consists of calls to the NASA/MSFC 

RE 

UNIVAC 1108 plotting routines as follows: 
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YB = 8.8 
YT = 11.2 
CALL QUIK3L(-1,XL,XR,YB,YT,lH+,BCDX,BCDYl,-IDX,PT,PYl~ 
CALL QUIK3L(C,XL,XR,YB,YT,IBO,BCDX,BCDYl,-IDX,PT,PZl). 
YB = -1.5 
YT = 1.5 
CALL QUIK3L(-l,XL,XR,YB,YT,lH+,BCDX,BCDY2,-IDX,PT,PY2) 
CALL QUIK3L(O,XL,XR,YB,YT,lHO,BCDX,BCDY2,-IDX,PT,PZ2) 
CALL QUIK3L(-l,XL,XR,YB,YT,lH+,BCDX,BCDY3,-IDX,PT;,PY3)' 
CALL QUIK3L(O,XL,XR,YB,YT,lHO,BCDX,BCDY3,-IDX,PT,PZ3) 
CALL QUIK3V(-l,lHO,BCDX,FLDY2,-IDX,PT,PY) 
CALL QUIK3V(-l,lHO,BCDX,FLDY3,-IDX,PT,PZ) 

The fluid velocity components are stored in the PYl, PY2 and 
PY3 fields while the balloon velocity components are stored in 
the PZl, PZ2, and PZ3 fields. The lateral and vertical co- 
ordinates of the balloon position are stored in the PY and PZ 
fields respectively. The preceding parameters are plotted as 
a function of time which is stored in the PT field. Examples 
of the plots generated by this block of output data are found 
in Section 5. 
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I 5. NUMERICAL RESULTS 

The computer program, BALLOON, has been used to numeri- 
cally solve the equations governing the motion of the balloon in 
a periodic,' three-dimensional flow field. The numerical results 
can be grouped in two categories. The first category contains the 
results of test runs to validate the numerical model incorporated 
into the program. This category is presented in subsection 5.1. 
The second category represents the results of a series of runs, which 
are designed to provide general insight into the balloon response to 
the flow field. This category is described in subsection 5,2 

Based on these numerical results certain observations con- ', 
cerning the behavior of constant-volume balloons have been made. 
These observations are presented in subsection 5.3 

5.1 Test Case Results 

Several types of test runs were carried out. The first 
were designed to provide a means of initially validating the 
model for certain simple conditions for which first-order theo- 
retical solutions exist. These runs are described in subsection 
5.1.1. The second type of test run was designed to verify the 
generality of the dimensionless form of the numerical solution. 
The results of these runs are presented in subsection 5.1.2. 
A number of other test cases were conducted to determine the 
effect of changing or omitting certain features in the program. 
The results of these tests are discussed in subsection 5.1.3. 

5.1.1 Initial Test Cases 

A series of four test cases were carried out which were 
simple enough to permit comparison with first-order theory. 
The simplifications employed in these four cases are summarized 
in Table 5-l. For each of these cases,as discussed in Appendix M, 
the period of oscillation based on first-order theory agreed 
closely with the results of the numerical solution. One 
additional test case (#5) was conducted to ensure that the 
simplification involving an isothermal atmosphere was not a 
special case. The period of oscillation for this test run, 
according to first-order theory, and the period obtained from 
the numerical solution were nearly identical. 
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Table 5-l 

Test 
Run 
# 

Summary of Simplifications for Initial Test Runs 

Drag 
Force 

Simplifications 
Fluid 

Apparent Bassett Acceleration 
Mass Force Force 

zero zero zero zero 

linear zero zero zero 

zero 3 balloon zero 
mass 

zero 

zero zero linear zero isothermal 

zero zero zero zero 

Atmosphere 

isothermal 

isothermal 

isothermal 

nonisothermal 
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5.1.2 Dimensionless Test Cases 

In order to verify the dimensionless formulation of the 
governing equations and the resulting dimensionless solution, 
two test cases (#6 and #7) were conducted with the program 
BALLOON. The dimensional input values for the two cases are 
presented in Table 5-2. While the dimensional inputs are 
clearly different for the two cases, the values of the five 
dimensionless parameters developed in Section 3.3 are the same 
for both'cases. Values of the dimensionless groups are pre- 
sented in Table 5-3. 

In terms"of dimensionless time, space, and velocity the 
differences in the numerical solutions for the two cases were 
less than 1%. The dimensionless plots of the vertical compon- 
ents of the balloon and wind velocities versus time for these 
cases are presented in Figure N-l of Appendix N. Thus the 
validity of the dimensionless formulation was confirmed. 

5.1.3 Other Test Cases 

Because of the fact that evaluation of the Bassett term 
represents 90% of the computation time in BALLOON, a test run 
(test case #8) was conducted, in which the Bassett term was 
set to zero with the same inputs as given for test case #6. 
The results are presented in Figure N-2 of Appendix N. As 
indicated in the figure, the absence of the Bassett term caused 
an 11% reduction in the period of the balloon motion. Although 
such a reduction is considered significant, the general shape 
of the plots of both balloon and wind vertical velocity compon- 
ents closely resemble those shown in Figure N-l. Furthermore, 
the Reynolds number associated with this test case was ~480 
which is considerably above the Stokes flow regime in which the 
Bassett term is rigorously applicable. For these reasons, 
computation of the Bassett term was omitted in subsequent runs 
unless the Reynolds number was ~1. 
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Table*5-2 

Dimensional Input Values for Test Cases #6 and #7 

:. :. Variable Case #6 Case #7 Units 

TO 

R 

Y 

8 

% 
w 

A 

Ii 

k 

ii 1 
0 

% 

218 300 

2.870224~10~ 

0:. 

.980; 6. 

1.40646x10-4 

3.20036~19-~ 

15.44 

0 

980.6 

1.84540x10-4 

2.72746xGF2 

19.15 

17.5562. 

J.42399x1o-3 

56.75966 

12.0616 

2.O7269$x1O-3 

: 45.7555 

3.61494x1O-4 

3.61494x1O-4 

::. 

,- 34 

. . : 
_’ 
r ._ . . 

OK 

cm2/sec 2 OK 

OK/cm 

cm/set 2 

g/cm set 

rad/sec 

cm/set 

cm 

cm"' 

cm/set 

gm/cm3 

&cm3 



. . . . 

: . . . ' : : Table 5-3,. .- I : ,:: .' ,: .' -1 : :. -_ .-,. 

Values of Dimensionless Parameters foli 
Test dase, #6 and #7 - 

75 I ,.: *::.. 

, 
V&iable Definition Value I . 

'"7 ., . . :. .U,"' :-;.-. -., 

L3 2.5 x 1O-2 
‘.. .,. .I 

Lt5 
,'$ 'g (g/R-y)D2 'I' 

,-A2To 
'ii:.25 x 1O-4 'G 

.: : ,S .: . ,_,I. ,a 

i 

: , 

kD 2.5 x 1O-2 

G fJ.ID ,'-2 
A 2.5 x 10 

_. ,. 



In the setup of test cases #6 and #7, the initial balloon 
velocity was set equal to the mean-wind velocity and, in 
theflow field model, the phase angle 61 was set to 0, with o2 ' 
set to 2~/~, and O3 set to -~IT/~. In examining the results 
obtained, the question arose as to whether or not a change in 
the value of the phase angle would have a significant effect on 
performance of the balloon. This question is equivalent to 
the question of the influence of the initial phase relation 
between balloon and wind velocity on the periodic solution. 

To resolve this issue, three additional test cases 
(#9, 10, and 11) were conducted with phase angles as indicated 
in Table 5-4. All other input variables in test cases #9, 10 
and 11 were the same as case #6. The results obtained are 
presented in Figures N-3 through N-5 of Appendix N. Examina- 
tion of these figures reveals that for each different phase 
angle immediately following time zero there is a different 
transient buildup for the balloon motion. Subsequent to the 
transient buildup, a periodic pattern occurs. Comparison of 
Figures N-l, N-3, N-4, and N-5 indicated that the periodic 
motion of the balloon relative to the wind, following the 
transient buildup, is essentially independent of the phase 
angle. 

5.2 Results of Numerical Experiments 

Based on the results of test cases #1 - #ll, the computer 
program BALLOON was considered acceptable forconducting a 
series of numerical experiments. To provide maximum results 
with a minimum number of computer runs the entire experiment 
was set up in dimensionless form. The experiment was carried 
out in two phases as described in subsections 5.2.1 and 5.2.2 
which follow. 

5.2.1 Phase I Numerical Experiments 

Considerable effort was devoted to devising a series 
of dimensionless runs involving variation of the primary 
dimensionless groups discussed in Section 3.2. With five inde- 
pendent parameters a complete investigation would entail a 

36 



Table 5-4 

Phase Angles Used in Test Cases #6 - #11 

Test Case # e1 

6 0 

7 0 

8 0 

9 r/2 

10 IT 

11 3r12 

e2 e3 

2v3 

2n/3 

-2v3 

-21T/3 

2n13 -27F/3 

.rr/;+2a/3 ='2 -2rl3 

IT +21T/3 IT -2r/3 

3d2+2’rr/3 3d2-2d3 
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very large number of runs. Accordingly in Phase I the decision 
was made to hold the variables L3, L5 and til constant with the 
values given in -Table 5-5 while systematically varying -k and G 
over the ranges indicated in the same table. The individual 
runs were visualized as elements in a matrix;as shown in 
Figure 5-1. The values of k and I% for each run were assigned 
according to the position of the element in the matrix. The 
matrix was designed such that along the main diagonal 

G=kG1 

which satisfies Taylor's Hypothesis. 

The dimensionless form of the input variables corres- 
pond to a large number of different physical situations. In 
this form, however, it is difficult to visualize the type of 
physical situation represented. Actually in Phase I the 
dimensionless parameters were computed from "typical" dimensional 
values of the physical parameters. The dimensional values used 
are presented in Table 5-6. It is important to note that in 
certain portions of the report dimensional results are presented 
in lieu of dimensionless values. In these cases the correspon- 
ding dimensional inputs are those presented in Table 5-6. 

5.2.1.1 Phase I - Original 16 Runs 

For the sixteen runs shown in Figure 5-l a quantita- 
tive analysis of the numerical results is presented in Appendix 0. 

A qualitative view of the results of these experiments is pro- 
vided by means of Figures 5-2 through 5-6. These figures depict 
the transverse and vertical position of the balloon and the 
velocities in all three directions as functions of time for 
each test. case within the matrix. In each figure, the sixteen 
plots are arranged in order of test case number so as to corres- 
pond to the elements in the test case matrix. Note that the 
scales differ from plot to plot within these figures. The 
scales were selected to provide a maximum of 10 complete 
oscillations of the forcing function. Also note that the equi- 
librium point is represented by a darkened line and that the 
balloon velocity may exceed the upper or lower limits of the 
graphs over certain intervals. In such situations portions of 
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Table 5-5 

Values of Dimensidnless Parameters fdr Phase I 

Parameter 

L3 

Definition 

12 v. 
AD' 

Value 

3.5914x1o-4 

L5, 
.& g (g/R -yD2 
3 A2To 

1.7317x1o-3 

G 
1 31/A .lO 

k 

3 

8.168x1o-3 

8.168x10-2 

8.168x10-l 

8.168 

8.168x1o-4 

*11 

*21 

A31 

*41 

kD 8.168~10-~ to 8.168x10-l 

8.168x10-3 

*12 

*22 

432 

*42 

8.168~10-~ to 8.168 

*13 

*23 

A 33. 

*43 

*14 

*24 

A34 

*44 

Figure 5-l. Basic Matrix A.. 13 for, Cases in Phase I 
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Table 5-6 

Typical Dimensional Values for Phase I 

Physical 
Parameter Value 

TO 
218O K 

R 2.870224 x lo6 cm2/sec 2 OK 

Y 0.0 OK/cm 

g 980.6 cm/set 

1.40646 x 10m4 g/cm set 

A lc>O.O cm/set 

D 

ii 1 1000.0 cm/set 

u 3.61494 x 10e4 g/cm3 

PO 
3.61494 x 10m4 g/cm3 

k 6.28 x 1O-6 to 6.28 x 10m3 cm" * 

w 6.28 x 1O-3 to6-.28x10-1 set -l* 

*Such ranges of k and w correspond to spatial wave lengths 
from 10 m to 10 km and time periods of 1 set to 1000 sec. 
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velocity plots are "chopped off". Examination of Figures 5-2' 
through 5-6 reveals that all runs, which are off of the main 
diagonal, display a periodic motion which is in good agreement 
with first-order theory. As shown in Appendix 0, the period 
of oscillation according to first-order theory is given by 

2n T= 
EliI -iI 

.I' 
(5-l) 

where 

(5-2) 

. I  : .  . :  

Along the main diagonal where Taylor's Hypothesis is satisfied, 
no long-term periodic motion is observed. The balloon experiences 
one or two oscillations after &hich the velocity components 
appear to reach steady:state values. It is important to note, however, 
that under such steady-state conditions the balloon drifts 
laterally (perpendicular to the mean wind direction) and general- 
ly remains belork its 'equilibrium altitude. i.4 ., 

5.2.1.2 Phase I-Intermediate Runs in Cruciform Arrangement 

The marked difference between on-diagonal and off- 
diagonal runs suggested the need for runs at intermediate values 
of wave number and frequency in the vicinity of the main dia- 
gonal.. Accordingly two sets of runs in cruciform arrangements, 

32 and ,C33, about elements A22 and A32, as shown in Figure 5-7, 
were carried out. A quantitative description of the results of 
these runs is presented in Appendix P. The basic trend observed 
in both sets of runs was one of increasing disagreement between 
first-order theory and observation, as conditions satisfying Taylor's 
hypothesis were approached along any branch of either cruciform. 
This trend indicates that nonlinear effects become significant 
under conditions which (nearly) satisfy Taylor's Hypothesis. 
It was also observed that the bounds of the region in which such 
nonlinear effects.occurred wece.related to the magnitude of 

'. 
the product"of!'.‘the dimensionless peri'od of oscillation, as computed 
by Equation (5-l) according to first-order theory, and the dimen- 
sionless wave number. 46 
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5.2.1.3 Phase I-Special Runs Concerning Lateral Drift - "_ L___.-I__ 

In all cases of balloon motion studied during Phase I, 
a lateral(,x2-direction) drift was noted. That is, the balloon 

.appeared to be subj.ect to a tiean lateral velocity. This drift 
was observed for the 16 cases comprising:the original experiment, 
matrix as shown in Figure 5-2. An example of this drift is shown in 
Figures 5-8 and 5-9. Figure 5-8 represents' a case off the pr'ini- 
cipal diagonal of the experiment matrix and shows the super- 
position of the oscillation due to the fluid oscillations and 
mean drift. Figure 5-9 represents a case on the principal' 
diagonal and shows an initial or transient displacement of the 
balloon (a feature found in many of the cases examined both on 
and off the principal diagonal) followed by a final mean drift. 
in the opposite direction. 

In examining long periods of balloon motion, it was 
found that the final direction of the lateral balloon motion 
depended on which side of the principle diagonal of the experi- 
ment matrix the experiment occurred. Thus, the final direction 
of drift appeared to depend in general on the sign of the 
quantity (ii - c), where ii is the mean wind velocity and c is the 
phase velocity. When c >u, a positive lateral drift was observed 
for the flow field under examination and when c &, a negative 
lateral drift was observed. Examination of the flow field model 
confirmed in general that with such inequalities, the balloon 
would be subject to lateral forces consistent with the drift 
observed. However, since a negative lateral final drift was 
observed when 6 = c (as shown in Figure 5-9), this rule was not 
considered sufficient and further tests were necessary. 

Several runs were prepared to examine the effects of 
modifications in the flow field on the balloon drift. These 
cases consisted of (1) varying the initialization of the balloon 
motion, (2) modifying the initial phase relationships among 
the velocity perturbations, and (3) setting 3 = 0. These tests 
were carried out for the two matrix points, Al1 and A31, as 
indicated in Figure 5-7. 

48 



-:\ 

0 1 2 3 4 6 6 7 8 S 10 11 12 I3 

DIYENJIDNLESS TlME,‘i m*cIIII 
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For both cases the first two procedures produced results 
which generally resembled those of the original experiment. 
Neither altering the initialization by setting 

-b v =- d (5-3) 

rather than 
+ v cu; (5-4) 

nor changing the phase angles of the y and z perturbations, 

@2< 3 ->O 

quantitatively affected the'direction of the drift. Setting U.= 0 
alters the original experiment such that c .u at all times. With 
this point in mind, the results, which showed the balloon drift- 
ing off in the pOSitivex2-direction, were consistent with the 

#earlier experiments. 

The preceding results indicated that there was no 
special bias in the model which caused the lateral drift along 
the main diagonal where Taylor's Hypothesis for the fluid was satis- 
fied. Further study revealed that :the mean balloon velocity, 7, 
(instead of the mean wind velocity, ii,) was the appropriate 
variable to be compared with the phase velocity, c. Thus the 
dividing line for lateral drift corresponds to 

v=c (5-6) 

representing Taylor's Hypothesis for a finite parcel. This 
relationship is satisfied slightly to the left (c> 6) of the 
principal diagonal of the original matrix. Three test cases 
were performed to confirm this relationship. The first, desig- 
nated Ti, corresponded to 7 CC; the second, T2, represented i3 '= c; 
and the third, T3, v > c. Figures 5-10 through 5-12 illustrate 
how the lateral velocity v2 asymptotically reaches a constant 
value in accordance with 

I 
>o (V < c) 

v2 
1 

=0 (V = c) 
<o (7 > c) (5-7) 
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Figure 5-10. I' Transverse Balloon Velocity for Case T1 (ii < c) 
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Similarly, Figures 5-13 through 5-15 show the lateral drift 
changing direction.* 

Thus the question of lateral drift was resolved and 
the distinction between Taylor's Hypothesis for the fluid 
(ii = c) and Taylor's Hypothesis for the parcel (v = c) was 
clearly established. 

. 

5.2.2 Phase II-Numerical Experiments 

As noted in subsection 5.2.1.3 the results of,Phase I 
revealed the distinction between Taylor's Hypothesis for the fluid 
(THF), and Taylor's Hypothesis for a finite parcel (THP). In 
addition, there was some indication that nonlinear effects. 
became significant when the product of the dimensionless wave 
number and the dimensionless period of oscillation, according 
to first-order theory, exceeded some limiting value. For these 
reasons a second experiment matrix B,Rk was designed. The rela- 
tion between the original matrix A.. and the second matrix is 
depicted in Figure 5-16. In the m%ix B &k along each row'the 
product of k * D was held constant while along each column the 
ratio of G/k remained constant. The arrangement of the matrix, 
along with the value of k and ij for each element is shown in 
Figure 5-17. The values of all other parameters are the same 
as for the first matrix. 

Also included in the figure is the product of the 
dimensionless wave number and the dimensionless period of oscil- 
lation (according to first-order theory) for each element of 
the matrix. It is important to note that along each column this * 
product remains constant, with THF being represented by the 
fourth column. Because the mean balloon velocity is a dependent 
variable, it is not possible to satisfy TBP exactly along any 
column of the matrix. Based on analysis of the special runs of 
Phase.1, however, the third column was empirically designed to 

* Notice should be taken that the direction of lateral drift when 
? # c depends upon the flow field model. Thus the inequalities 
presented in Equation (5-7) might be reversed in some cases. 
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Figure 5-14. Transverse Position of Balloon for Case T2 (v = c) 
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Figure 5-16. Relation Between Experiment Matrix A;; 
of Phase I and BkR of Phase II IJ 
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Note: Beneath each matrix element there are two numbers. The upper Is k 
and the lower is 0. 

Figure 5-17. Matrix BkR for Phase II 
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approximately satisfy this hypothesis based on the value of the 
product, ?rG. 

A complete set of detailed plots from Phase II is 
provided in a separate document Ill. Qualitative results are 
given graphically in Figures 5-18, 5-19 and 5-20. The period 
of observation is the same for each column but none of the other 
coordinates necessarly coincide. Figure 5-18 presents the ver- 
tical velocity of the balloon and the wind at the balloon's posi- 
tion as a function of time. These results are similar to those 
found in previous cases. The vertical position of the balloon, 
shown in Figure 5-19, is seen to correspond to the vertical 
velocities. Away from THP corresponding to column 3, the balloon 
is seen to oscillate regularly. Close to THP the balloon is 
seen to reach equilibrium at progressively lower altitudes 
to the right (along the rows), or toward the bottom (along the 
columns), of the figure. Along the bottom row, it can be seen that 
the balloon does not reach equilibrium within the time period shown, 
although the balloon velocities are approaching zero. Also in the 
last case shown along the third row the oscillation is not found. 

Figure 5-20 shows the lateral position of the balloon 
as a function of time. The results are very similar to those 
discussed in subsection 5.2.1. When the phase velocity exceeds 
the mean balloon velocity (c)v), corresponding to column 4 and 5, 
the balloon drifts toward the positive y-direction. When cc? 
corresponding to column #l and #2, the balloon dirfts toward the 
negative y-direction. It is important to note that along column 
#3 Taylor's Hypothesis for the parcel is not exactly satisfied. 
In row #l of column #3 the balloon drifts toward the positive y- 
direction in near equilibrium, while in subsequent cases the 
balloon drifts toward the negative y-direction. Thus, the 
assumption that THP depends only on the product ik is found to 
be incorrect as it probably also depends on the scale of motion 
(which may also be responsible for the differences seen in row 
#3 of Figures 5-18 and 5-19). 
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5.3 General Observations Concerning Balloon Response 

Examination of the numerical results from Phases I and 
II of the numerical experiments revealed a number of significant 
features of the balloon behavior. First of all, the mean motion 
of the balloon in the horizontal plane did not in general corres- 
pond to mean horizontal.wind. As already noted the balloon exhib- 
ited a lateral.drift except when Taylor's Hypothesis (for the par- 
cel) (TRP) was satisfied. In addition, when the x1- component of 
the mean wind velocity greatly exceeded,the phase velocity (iil>>c), 
the balloon mean x1- velocity component generally was slightly less 
than the wind velocity component (vl< ul) as shown in Figure 5-21. 
However, as c increased relative to il, "1 also increased until, 
as Taylor's Hypothesis (for the fluid) (THF) was approached, 31 
first equaled and then exceeded cl. Subsequently when THF was 
satisfied, cl exceeded both ii1 and c. For a value of c sli.ghtly 
greater (-5%) than cl, THP was satisfied with c becoming equal to 
v 1' Further increases in c resulted in a reduction in vl until, 
for cases where c was very large compared with ii,, vl became 
essentially equal to Ul. 

Comparison of the quasi-Lagrangian frequency of the 
balloon, 3. with the Eulerian frequency of the wind, w, also 
proved of interest. The quasi-Lagrangian frequency was less than 
the Eulerian frequency for all values of c greater than til/2. For 
smaller values of c the 'quasi-Lagrangian frequency exceeded the 
Eulerian frequency. This variation is shown in Figure 5-22. As 
indicated in the figure the quasi-Lagrangian frequency is zero 
when THP is satisfied (c = cl). Also the quasi-Lagrangian fre- 
quency equals the Eulerian frequency for c = ul/2. 

As indicated by the figure the numerical results 
generally agreed with linear theory except in the vicinity of 
Taylor's Hypothesis where non-linear effects became significant. 
The relation between the quasi-Lagrangian frequency and the Eulerian 
frequency was observed to be 

% = kc-kvl 
I I 

(5-3) 
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where 
w= lkc; (S-9) 

-.. 
This relation is quite similar to that suggested by Gifford [128,] " 
which, as.shown in Section .2.3, ,was of the form _ 

w= ~2; + k ii1 (2-l) 

In Gifford's case the Eulerian frequencies were all larger than 
the Lagrangian frequencies and thus the absence of the absolute C 
value signs was of no significance. With this fact in mind, : 
combined with the observation that 

v zzu 
11 (5-10) 

it can be seen than the two relations are nearly equivalent. 
Notice should be taken that the first-order perturbation analysis 
presented in Appendix H also suggested this same type of relation. 

Gifford demonstrated [128] that a relation of the form 
of Equation (2-l) was sufficient to correlate the measured Lagran- 
gian spectral peak frequencies to the-corresponding Eulerian 
spectral peak Srequencies. Three investigations by Angel1 et.al. 
[132,137,1421 also developed and compared Eulerian and quasi- 
Lagrangian spectra as discussed in Section 2.3. Unfortunately, in 
none of these studies were the values of the spatial wave number k 
determined.* In every case, however, the Lagrangian frequencies 
were less than the Eulerian and there was a tendency for the ratio , 
B ( = a/$!,) to increase as the wind velocity increased. These 
observations are consistent with the form of Equation (5-8). 

In two other studies discussed in Section 2.3, Kao et.al. 
[133,134] also presented Eulerian and Lagrangian spectra for 

comparison. In these cases,which involved much higher altitudes 
and lower frequencies than the studies of Gifford and AngelI, the 
Lagrangian peak spectral frequencies were larger than the Eulerian. 

* It is not sufficient to calculate k according to the relation, 
k= w/c, because this relation is based on the assumption that 
THF holds. 
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Based on Equation (5-8) and Figure 5-18, it would appear 
that the phase velocities encountered by Gifford,and Angel1 exceeded 
ii,/2 9 while the phase velocities involved in Kao's investigation 
were less than this value. This result is generally similar to the 
observations of Mizuno and Panofsky [1801 in the atmospheric 
surface layer. However, because of the fact that both Gifford's 
and Angell's data involved measurement of small-scale vertical 
fluctuations at low altitudes (300-4200 feet) while Kao's data 
involved measurement' of .large-scale horizontal fluctuations at .' 
higher altitudes (18000 to 30000 feet,), a certain degree of'caution 

.must be exercised before drawing any final conclusions concerning 
the relative magnitude of phase velocities and mean wind velocities. 

Many of the investigations discussed in Section 2.3 
involved measurement of the ratio of the Eulerian frequency to the, 
quasi-Lagrangian frequency B. It is important to note that 

$ E 

.= 

A combination 

B = 

= 

Except in the immediate vicinity of Taylor's Hypothesis, Equation 
(5-12) can be approximated as 

W/Q;l 
bci/Qi 
of Equations (5-8) and (5-11) yields 

(5-11) 

: ' 

-J-&q . . 
C I I c-v 1 

(5-12) 

1+ 5 (5713) 
C  -ii 1 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Clearly the response of a constant-volume balloon to 
atmospheric turbulence is a complex problem. The current investi- 
gation has utilized a more rigorous mathematical model than pre- 
viously employed, but even so, certain simplifications were made 
to keep the problem tractable. Representing the flow field as a 
periodic function, as opposed to a random variable, is of special 
significance. Some of the responses of the balloon to the periodic 
function may not occur in the presence of the real random process. 
Thus, caution must be exercised in reaching general conclusions. 
At the same time, the numerical results obtained are in general 
agreement with observations, and a number of points are worthy of 
note. These matters are presented in subsection 6.1. In the 
course of the study a number of questions arose for which no 
answers could be obtained due to time and funding limitations. 
Certain recommendations aimed at answering such questions are 
provided in subsection 6.2. 

6.1 Conclusions 

First, the distinction between Taylor's Hypothesis (for 
the fluid) and Taylor's Hypothesis (for the parcel) is of consider- 
able interest because this distinction sheds light on a number of 
characteristics of the balloon motion. The balloon does not move 
with the same mean velocity as the wind and thus when THF is satis- 
fied the balloon does not "lock in" with the wind velocity. When 
THP is satisfied, however, the balloon does match the mean wind 
direction (but not its speed). Under such conditions the balloon 
displays no oscillation or lateral drift. 

Except in the vicinity of Taylor's Hypothesis the quasi- 
Lagrangian frequency of the balloon could be related to the Eulerian 
frequency of the wind by means of a Doppler shift law, in accor- 
dance with first-order theory. In the vicinity of Taylor's Hypothe- 
sis first-order theory was not sufficient to relate the Lagrangian 
and Eulerian frequencies. When TRP was exactly satisfied, the 
Lagrangian frequency was, of course, zero. 

e 
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Based on available measured data, it would appear.that 
constant-volume balloons generally display some oscillatory mo- 
tion and,thus THP is not being satisfied. Because THP is gene- 
rally close to THF, this suggests that the latter is also not 
being satisfied. 

An examination of the available Eulerian and Lagrangian 
turbulence spectra obtained from earlier studies indicates that 
a simple Doppler shift relation such as that suggested by first- 
order theory is possibly sufficient for correlation. Unforturi- 
ately such an approach requires values of the spatial wave number 
(based on direct measurement as opposed to calculation based on 
Taylor's Hypothesis) and these values are not generally available. 

Although the balloon did not respond exactly to either 
the mean wind velocity or the periodic velocity fluctuations, 
the wind velocity served as a forcing function. The natural 
oscillatory frequency of the balloon was only observed during the 
initial phase following the start of a test case. 

Casting the problem in dimensionless form and providing 
a dimensionless numerical solution are also significant. Unfortun- 
ately a complete evaluation of the relative importance of the per- 
tinent'dimensionless groups was not accomplished and it is not 
clear whether or not a more "universal" solution can be obtained. 

6.2 Recommendations 

The most important recommendation would be to replace 
the current periodic model for the flow field with a random model. 
The resulting balloon motion could then be subjected to Fourier 
analysis and realistic Eulerian and Lagrangian spectra could.be 
generated and compared. 

Further analysis of the existing numerical data should 
be made to provide better understanding of the relationship be- 
tween the various parameters. Such analysis might lead to a more 
precise relationship between Taylor's Hypothesis (for the fluid) 
and Taylor's Hypothesis (for the parcel). 
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The dimensionless groups associated with the dimensionless 
form of the equation should be varied over a wider range of values 
to establish their relative importance. A more general solution 
should be obtained if possible. 

Further study should be made of existing Eulerian-Lagrangian 
turbulence spectra to provide more conclusive proof of the Doppler 
shift relation between these two types of systems. Methods for 
calculating the spatial wave number as a function of altitude, 
without use of Ta,yl.or's Hypothesis, should be investigated. 

Further investigation should be made into the question of 
the difference between the mean direction and speed of the ,balloon 
motion and that of the wind. Conditions under which such differ- 
ences are significant in the atmosphere should be defined if 
possible. 
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APPENDIX A 

Balloon Terminology 

During the past 65 years a number of different terms have 
been used to describe that class of halloons which are designed for 
horizontal flight with a constant volume at essentially a constant 
altitude. The definitions which follow are designed to aid the 
reader in understanding the similarities and differences between 
the types of balloons to which the terms apply. For convenience 
the dk'finitions are arranged in alphabetical order. 

CQNSTANT ALTITUDE BALLOON - A helium-filled, zero-pressure balloon 
made of polyethelene for high altitude research. 

CONSTANT DENSITY BALLOON - A pillow-shaped balloon made of Mylar. 

CONSTANT-LEVEL BALLOON - A balloon which by means of ballast or 
superpressure is designed to operate at essentially a 
constant altitude. 

CONSTANT-PRESSURE BALLOON - A balloon of the type used in the 
transosonde system. 

CONSTANT-VOLUME BALLOON - A balloon whose volume remains essen- 
tially constant during flight. This condition is usually 
achieved by inflating the balloon to a pressure which is 
considerably greater than the ambient air pressure at 
the equilibrium hltitude. 

CONTROLLED ALTITUDE FREE BALLOON - A balloon made of polyethelene 
with a control device to maintain constant altitude. 

HORIZONTAL SOUNDING BALLOON - A superpressure balloon made of Mylar 
designed for level flight for periods in excess of 60 days. 

LEVEL BALLOON - An expansible balloon made of rubber or Neoprene 
equipped with a valve in the neck to maintain constant 
levels at high altitudes. 

NEUTRAL BALLOON - A balloon with zero lift. 

PILOT BALLOON - A balloon made of rubber or Neoprene used for 
observing winds aloft. 

SUPERPRESSURE BALLOON - A balloon made of nonstretchable material 
(normally Mylar) so that its volume is essentially 
constant with excess internal pressure. 
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TETROON-- A one-cubic-meter constant-volume balloon of tetra- 
hedronal shape constructed of Mylar. 

TRANSOSONDE - A constant-level balloon equipped wit.h.met.eotio-' 
logical sensing instruments, a radio transmitter, and a 
powersupply. : ,I 

',. . . 

.r 

. 
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APPENDIX B 

Equation of Motion for Immersed Bodies 

The governing equation for the motion of a body submerged 
in a turbulent fluid consists of the'equation for the conservation 
of momentum of ~the body coupled with the equation for conservation 
of momentum of the fluid. The governing equation has been developed 
in various forms 141,144-156,161,163,165,166 with various simpli- 
fying assumptions for a number of different applications,but there 
is not total agreement as to the validity or equivalence of all 
such forms. The development which follows is relatively general and 
the result is an equation which is representative of the type en- 
countered'in the analysis of the motion of bodies immersed in a 
turbulent flow. 

Consider first the conservation of momentum for a spheri- 
cal body of density Q, diameter D, and mass m, slowly moving 
(Re<O.l)* with a velocity vi in an otherwise stationary fluid in 
the presence of a gravitational field, as originally developed by 
Basset 144 . This equation can be written in the form 

dv. dvi _ 2+, -- 
q dt a dt (FDli + (Fp)i + (Fg)i + (FB)i 

where 

ma = + q ofa (apparent mass) 

(FD)i= -3v Duvi (drag force) 

(Fpji= -m/aap/axi 1 (pressure force) 

(Fgli = m gi (gravitational force) 

(FBji = 313 pD 
2 J71v it dF'i/dfj' dt' (Basset term) 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

* This condition is not necessarily satisfied with a CVB 
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Before proceeding further it is important to note that 
the apparent mass term, madvi/dt', can be derived from inviscid 
flow theory and has the same value for both viscous and inviscid 
flow. The apparent mass term represents the time-rate-of-change 
of fluid momentum due to inviscid effects. The Basset term is 
produced by viscous effects and thus can be interpreted as the 
time-rate-of-change of momentum of the fluid due to viscous 
effects. Together the apparent mass and Basset terms produce an 
additional drag on the body which is a function of the time-rate- 
of-change of the relative velocity of the fluid with respect to 
the body. 

The next step in the development involves considering the 
case of a body slowly moving in a fluid with non-uniform velocity 
ui ct,xil. The non-uniform velocity ui (t.xi) represents a turbulent 
flow process with the following assumptions 11481. 

1. The turbulence is steady and homogeneous. 
2. The domain of turbulence is infinite in extent. 
3. The body is spherical with a motion relative to the 

fluid which is characterized by a Reynolds number 
less than O.l.* 

4. The body is small relative to the smallest turbulence 
wavelength present. 

5. While the body is in motion the fluid immediately 
surrounding it will be composed of the same fluid 
particles. 

6. The only external force acting on the body is produced 
by a gravitational field (or other potential field). 

The conservation of momentum equation for this case can be written: 

dv. 
m dt 1 +m 

d(vi-ui) 
a dt = (FDji + (Fpji + (Fg)i + (FR 

where 

(FD)i = -3nDu(vi - ui) 

(Fp)i = -m/o ap/axi 

)i (B-7) 

(B-8) 

(B-9) 

* The condition of small Re ( 0.1) is not necessarily satisfied 
with a CV8. 
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(Fgli. = mgi (B-10) 
t 

(FB)i = - ; pD2c J- 
' [vi(") - Ui(t')] dt' 

dt' (B-11) 
0 J t -t' 

Notice should be taken that in apparent mass term, the drag term, 
and the Basset term the body velocity vi has been replaced by the 
relative velocity (vi - ui), because in each case the resistance 
is a function of the relative velocity between the body and the 
fluid. 

The next step in the development of the body momentum 
equation consists of expressing the pressure force term as a 
function of the fluid velocity. For the case of an incompressible 
fluid with a velocity ui(t) which is a function of time but is 
spatially uniform, conservation of fluid momentum can be expressed 
as 

D"i _ 
' Dt - - -ap/axi + pgi (B-12) 

For the case of the non-uniform fluid velocity ui(t,xi) the instan- 
taneous equation for the conservation of fluid momentum can be 
written for the incompressible case as: 

DU. 
p Dt 1 = -apjaxi + p 

a2ui 
axjaxj + pgi (B-13) 

Notice should be taken that in equation (B-13) the instantaneous 
fluid properties are represented and not the time-averaged. Thus, 
although the flow may be turbulent, no turbulent or Reynolds 
stresses appear in the equation for momentum conservation. 

In his original development Tchen [145] neglected the 
viscous stress terms and effectively equat'ed the follow-the-fluid 
particle derivative, Dui/Dt, to the follow-the-solid body 
derivative, dui/dt. Such a process corresponds to the simpli- 
fying assumption: 

- Pgi 
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Tchen used this relation to replace the pressure force term in 
equation (B-l). Corrsin and Lumley [1461 first noted the inexact- 
ness of this approximation while Hinze 11481 indicated that such 
an approach was valid if: 

2 au 
G cc1 " 

and 

(B-15) 

(B-16) 

Hinze's development of Equations (B-15) and (B-16) is not 
altogether rigorous as indicated by the absence of subscripts. 
More precisely the two conditions are: 

and 

vk (aui/axl:) 

2/3 v(a2ui/axj axj) 
>> 1 

If the flow is near isotropic it is reasonable to assume: 

u1 - VI = u2 - v2 z u3 - v3 

VI z v2 : "3 

aui I aui au. -:1 
3 - ax2 ax3 

and 

a2u. =_ a2u. a2u.. 
--1,1 
axI ax22 axs2 

With these assumptions equations (B-17) and (B-18) reduce to 

g 1 aui/axj ( << 1 

(B-17) 

(B-18) 

(B-19) 

(B-20) 

(B-21) 

(B-22) 

(B-23) 
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and 

* 1-l 

Equations (B-23) and 

(B-24) 

(B-24) are seen to agree with'equations (B-15) 
and (B-16) except for the subscripts, the numerical constants, 
and the use of absolute values, all of which Hinze omitted. 

Because the spatial derivativesof the fluid velocity, 
represent instantaneous values as opposed to time-averaged values, 
for the case of homogeneous turbulent flow, the order of magnitude 
of such derivatives can be expressed'in terms of the scale,and 
intensity of the turbulence as follows: 

1 aui/axj 1 14: ui2 ‘3 

1 a2ui/axj2 1 z J 7 /'j2 

i 

(B-25) 

(B-26) 

where 

x 
3 

= micro-scale of turbulence. 

A combihation of equations (B-23) and (B-25) yields: 

D2 ,/= 
6v ufv 2 /'j <c 1 

1 

while combining equations (B-24) and (B-26) produces: 

Now 

v.-ii + 1 i J z 1 

(B-27) 

(B-28) 

(B-29) 
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Thus equation (B-28) can be reduced to 

’ (‘i/ J - 
Ill2 

+ 1) A. 2 
J 

>>>l (B-30) 
, .D2 

For a turbulent flow field with known values of kinematic visccisity, 
turbulence intensity, turbulence micro-scale, and mean fluid L 
velocity, equations (B-27) and B-30) provide a means of quanti- 
tatively determining the maximum size bodies for which Tchen's 
approximation of the pressure force is valid. 

For spherical bodies which satisfy the preceding restric- 
tions the particle momentum equation can be written 

dvi 
rnK +m 

d(vi-ui) 
a dt = -31~Dsl(v~ - ui) + rn@ 

t 
3.2 - -- 
zDJ VW J 

0 

Now 

m= L D3c 6 

and 

m = a CT D3P 

dui 

d [vi(t’)-Ui(t’)J/d” dt, (B 31) 

\I t - t’ 

(B-32) 

(B-33) 

Introduction of the two preceding relations into equation (B-31) 
produces 

dvi t d [ui(t')-vi(t')]/dt' 
dt +av.=au.+b- 

1 1 J-77 
dt' +dgi (B-34) 

where 

a = 36~ 
(20 + p) D2 (B-35) 

(B-36) b = ;/+ p 
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(B-37) 

(B-38) 

Equation (B-34) is the most familiar form of the immersed body 
momentum equation. It should be realized, however, that in 
this f&m.the application of the equation is generally limited 
by the driginal assumptions, as well as the restrictions imposed 
by equations (B-27) and (B-30). 
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APPENDIX C 

Derivation of Dimensionless Equations 
for Conservation of Balloon Momentum 

-As developed in Section 3.1.1 the equations for conser- 
vation of balloon momentum in dimensionless form can be written 

(C-1) 

Now the density p is not a constant but varies with altitude, x3. 
For an ideal gas 

For the case of a constant temperature lapse rate, y, in a 
hydrostatic atmosphere, 

T ( 1 k = p PO T 0 

A combination of Equations (C-2) and (C-3) produces 

is- -1 
RY = 1 - $- (x3 - x3o) 

0 3 

(C-2) 

(C-3) 

(C-4) 
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where x3o is the equilibrium altitude at which c =p, . If 
Equation (C-4) is divided by Q the result is 

l- 1. b-l = iiA;i 3 

where 

g = YD 
To ’ 

(C-5) 

(C-6) 

A%, = x3/D - x30/D 

b= g/W 1 (C-8) 

Now Equation (C-5) can be substituted into Equation (C-l) but the 
result is quite cumbersome. A term by term examination of the 
9. Ii. S. of Equation (C-l) reveals that only in the numerator of 
the fifth term, representing buoyancy, does the variation of p" 
appear significant. If Equation (C-5) is substituted into only 
this term in Equation (C-l), the result is still awkward because 
of the nonlinear form of Equation (C-5). To avoid this difficulty, 
by means of series expansions, 

(1 - ii A;;3)b-1 = 1 - (ii - 1 ) ii AS, + o (A2X3) (C-9) 

Neglecting second order terms, 

P "1 - (i - 1) ; AZ; (C-10) 

If Equation (C-10) is substituted into the numerator of the fifth 
term of the R. H. S. of Equation (C-l), the result is 
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Equation (C-11) represents a dimensionless form of the.balloon 
equations from which certain dimensionless parameters can be 
'obtained. A term by term inspection of the R. H. S. of Equation 
(C-11) results in the following dimensionless groups: 

Ll = d&T 
L2 = 2a : p 

L3 = 12v 
'A D 

1 
L4 = 2 CDR 

2 L5= 3 g (R/R -Y ) D2 
A2 To 

L6 = 6 A; 

(C-12). 

(C-13) 

(C-14) 

(C-15) 

(C-16) 

(C-17) 

In terms of the six-preceding dimensionless groups, Equation (C-11) 
can be written 
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dGi 
- = 3LlL3 (ti-ai) + 3L1L4 (pi 
dt 

pi 
+ 3Ll L 

aiii 

Dt 
+ +pj-iij) ; - 3L2L5 

j 

.’ 

df’ 

! 7 

‘. 

Ax36i3 
‘. 

:. 

/ (C-18). 
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&PENDIX D 

Dimensional Inviscid Flow Field Development 

The velocity components are assumed to be of the form 

(D-2) 

u3=csin(~~+~~+kpy ut+6$ (D-3) 

For brevity let 

Then 

% 

ax, 
= ck3 cos (5 - wt + 03) 

For mass conservation, 

Thus 

(D-4) 

(D-5) 

(D-6 1 

(D-7) 

(D-8) 

Akl - (5 - 6.a + 01) + Bkz cos (5 - ut + 02) + Qs ax (5 - ut + 0,) 

= 0 (D-9) 

or 

Akl{ cus(E- wt) cos o1 - sin (5 - wt) sin al) + Bk2 Icus (5 -,wt) ms o2 , 
- sin (5 - wt) sin 021 + ck3 ccos (5 - wt) cos 4 

- sin (5 - wt) sin 03] = 0 (D-10) 

To satisfy Equation (D-lo), it is necessary for 

(Akl coSOl+BkJ cos o2 + Qs ax 03> cxx (5 - ut) = 0 (D-11) 
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and 

(Akl sin Ol + Bk2 sin o2 + ac, sin 03) sin (5 - ut) = 0 

This in turn requires 

Akl. ESO1+l+ als62+Q5coso3=o 

and 

Akl sin o1 + Bkz sin O2 + %3 3=O sin 6 

Equation (D-13') can be multiplied by tan Ol to obtain 

% sin o1 + Bk2 cos o2 tan o1 + Q"3 cchs o3 tan o1 = 0 

Subtracting (D-15) from (D-14) yields 

Bkz( 2- sin 6 - 02 ,t= 01> + Q5 (sin o3 - - o3 tan gl, = 0 

Solving for B, 

Qs (sin 6 - 
Ba -- 3 cus o3 tan 01) 

52 (sin o2 - ccs o2 tan 01) 

Next Equation (D-13) can be multiplied by tan O2 to obtain 

Akpos o1 tan o2 + Bkz sin o2 + % - o3 tm o2 = 0 

Subtracting (D-18) from (D-14) yields 

Akl (Si”O! - cOsOl tan02 + Q5 (sin03 - m03 ta02) = 0 

Solving for A, 

Q5 A= - - 
(sin03 - cod3 td2) 

kl (sin 0 1 - cod1 taH2) . 

(D-12)' 

(D-13)' 

(D-14) 

(D-15) 

(D-16) 

(D-17) 

(D-18) 

(D-19) 

(D-20) 

Thus if Equation (D-17) and (D-20) are satisfied, the inviscid 
flow field model described in Equations (D-l) through (D-3) 
satisfies the continuity equation. 

Certain other partial derivatives of velocity with respect 
to space and time can be derived from the model as follows: 

aul - = Ak2 cos ( 5-.wt + 01) 
ax2 

(D-21) 
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aul - = Ak3 cos (5 - wt + 01) ax3 

au, '..,T +,- 
zy= 

m au, 
-= 
ax3 

'Bk3 cos (5 - wt +.02) ' - ".' 

au3 
- = Ckl cos (5 - wt + 03> 
ax1 

au3 - = Ck2 cos (5 - wt + 03) 
ax2 
.au, 
--=-AU cos (5 - wt +,01) at 

au2 -=-Btll cos (5 at, - wt + 02) 

au3 -=-cm cos (5 at - wt + 03) 

As formulated the model contains a total of eleven 
different parameters (G,, A, B, C, kl, k2, kg, W, ol, 02, and 0,). 
As given by Equations (D-17) and (D-20) for conservation of mass, 
two of the three amplitudes (A, B, and C) must be functions of 
the third. Thus there are nine independent parameters in Equations 
(D-l) through (D-3). In the current study, it was not feasible 
to consider all possible combinations of these nine parameters. 
The following simplifications were made: First, all wave numbers 

(kl, k2 and k3) were taken to be equal, 

kl = k2 = kg = k (D-30) 

(D-22) 

1 (D-23) 

: (D-24) 
_: .,, d- ,. ., 

(D-25) 

(D-26) 

(D-27) 

(D-28) 

(D-29) 

Second, by proper choice of the phase angles (9,, 02, and 6,) the 
amplitudes were taken to be equal. 

A =B=C (D-31) 

It can be readily shown by means of Equations (D-17) and (D-20) 
that the phase angles, 

ol=o (D-32) 

62 = 27T/3 (D-33) 
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O3 = -2m/3 (rl-34) 

or any similar combination of phase angles set 120° apart, satisfy 
Equation (D-31). 

Based on the simplifications noted, the fluid veloci'ty 
components can be written as 

ui - % %l + A sin (r - wt + Qi) (D-35) 

where 

5 = k (xl + x2 + x3) 

e1 = 0 

O2 = 2rr/3 

(D-36) 

(637) 

(D-3.8) 

Q3 - -2r/3 (D-39) 
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APPENDIX E 

Dimensionless Inviscid Flow Field Development 

As“ developed 
can be expressed as: 

U. SC 1 'i.1 + A sin 
1 

: 

in Appendix' D, the wind velocity components 

( c- wt + Oi) (E-1) 

where 

5 = k (xl + x2 + x3) (E-2 1 

o1 = 0 (E-3) 

62 = 2'rr/3 (E-4) 

63 =-2T/3 (E-5) 

Based on the nondimensional procedure followed in 
Appendix C, Equation (E-l) can be written in the following 
dimensionless form: 

ii i =U 1 6il + sin ( G - GZ + 6i) (E-6) 

where 

iii = ui/A (E-7) 
", 
u1 = $/A (E-8) 

c = k (sl + ;L2 + x3) (E-9) 

ci = wD/A (E-10) 

z = At/D (E-11) 

ii = kD (E-12) 

2, = xi/D (E-13) 

Equation (E-6) represents the dimensionless form of the inviscid 
flow field. Notice should be taken that in dimensionless form 
the flow field can be described in terms of three dimensionless 
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grows, $a k, and G. The dimensionless variables Xi and t are . 
not necessary for characterizing the flow field because they 
represent the coordinates of the balloon in space and time (to 
be obtained from the solution of the differential equation 
governing the balloon m&ion). 
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APPENDIX F 

Reynjlds Number Relation'to Dimensionless Groups 

.The'Reynolds number for flow past the balloon is defined 
as: 

4 +' . 

'Re = b' lu-vlD 
u (F-1) 

Now, the q aximum'difference between the wind velocity and the. 
.balloon velocity must be roughly equal to the amplitude A in 
the inviscid flow field model. Thus, 

(F-2) 

Therefore, 
P AD Re= r (F-3) 

An examination of the first dimensionless groups given in Appendix 
C reveals that to first-order accuracy, 

Re = WL3 (F-4) 

where 

=g&J 
L3 AD (F-5) 
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APPENDIX G 

Dimensional Analysis 
: I .-: . 

Dimensional analysis'& a standard technique for reducing 
the number of variables in'a problem and for identifying the 
important parameters associated with the problem. This is 
particularly useful when one has a physical problem the variables 
of which are well known but for which no analytic relationship 
is known: But, it is also useful for deterinining'the necessary 
nondimensional groilps 'for a given'set of analytic'relationships 
describing a physical process.' .. ' ', _1 " 

For the analysis of a balloon in a realistic atmosphere, 
this analysis is presented as an extension of the development of 

the nondimensional equations discussed in Appendices Cand E. 
The pertinent variables for the analysis are: 

V. 1 
balloon velocity 

X. 1. balloon position 

U. 1 ambient wind velocity 

t elapsed time 

P ambient density 

lJ dynamic viscosity 

g gravitational acceleration 

u density of the balloon 

D diameter of the balloon 

CDR drag coefficient (lo3 <Re< 105) 

The first two variables, vi and xi represent the unknown properties 
of the balloon. These two variables are not independent of each 
other since vi is simply the time deviative of xi. The variable 
U. 1' representing the ambient wind velocity can be expressed as 

ui =U i G,, A,k,w) 
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. . 

The ambient density, p, can likewise be expressed as 

P = p(p,, Y,To.g,%x3) 
,’ 

(G-2) 

The viscosity, u, can also'be expressed as 

lJ = v(lJ,, Y,T~,x~> (G-3) 

Thus there are 16 variables (vi,xi,$,A,k,w,t,po,y,To,R,uo,g,a,D_CDR) 
involved in the dimensional analysis. The primary dimensions 
involved are mass (M), length (a), time  (t) and temperature (T). 
The dimensional matrix for this case is as follows: 

v. x. 
1  1  ul A k  u  t PO Y To R PO g 0  D CDL 

M  0 000000100 OI 010 0  
11 1  1  1  l-l 0  o-3 -1 0  2  -1 l-3 10 
t -1 0  -1 -1 0  -1 1  0  0  0  -2 -1 -2 0  0  0  
T..O 000000011-10 0  0  0  0  

According to the Buckinghamfltheorem, with 16 variables and 4  
primary dimensions, there will be  a  maximum of 12 dimensionless 
groups. The 12 dimensionless groups take on a  variety of forms 
depending on the choice of primary variables. If A, p,, D and 
To are chosen as the primary variables, then the following dimen- 
sionless groups result: 

%  = vi/A (G-4) 

I12 = xi/D (G-5) 

R3 = iii/A 

n4 = wD/A 

IT5 = At/D 

%  = yD/To 

n7 = RTo/A2 

‘8 = u,I(AP~D) 

n9 = gD/A2 

%o  = O/PO 

II 11 = kD 

‘12 = ‘Dfi 

(G-6) 

(G-7) 

(G-8) 

(G-9) 
(G-10) 

(G-11) 

(G-12) 

(G-13) 

(G-14) 
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Some of the preceding dimensionless groups are identical 
to or closely resemble the dimensionless groups derived in 
Appendices C and E of this report. Others, however, are not so 
easily identified. The relationships between the two sets of 
dimensionless groups can be developed as follows: 

v i =,pl (balloon velocity) (G-16) 

% = II2 (balloon position) (G-17) 

2 = II5 (elapsed time) (G-18) 
1 

Ll S 21110 + 1 

Li g %o 
2111G + 1 

(G-19) 

(G-20) 

(G-2i) 

(G-22) 

(G-23) 

(G-24) 

i = $1 (G-25) 
w " w= =4 (G-26) 

ii1 = Jr3 (G-27) 

The use of the approximate equalities in Equations (G-19) through 
(G-22) and in Equation (G-24) reflects the fact that Ll through 
L4 and L6 contain the variables p and I.I while 118, III0 and IIll 
contain their equilibrium counterparts p, and uo. An examination 
of Equations (G-16) through (G-27) reveals that all 12 dimension- 
less groups (II, through Ill2 ) appear in the definitions of the 
dimensionless terms which arise in the dimensionless differential 
equation for balloon motion and the dimensionless inviscid flow 
field model. Furthermore, as previously noted, "vi and "xi (III and 
112) are not independent of each other but represent the solution 
of the differential equation for the balloon equation. The. 
variable t (II,) is obviously dimensionless time, with'respect to 
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which both jii and Si can be expressed. The remaining ei-ght dimen- 
sionless groups can be reduced to five if the ratio p/a is taken 
as unity and if'C!D --is -taken- &con&ant.* Thus, with. this simpli- 
fication the entire problem can be characterized in terms of - 
five dJmensionless,groups: 8 

12v .2 g(g/R-Y)D2 , kD OD. iii 
zp 3A2'To 

, A , and A . 

The solution in terms of dimensionless balloon position (xi/D) 
and velocity (vi/A) as functions dimensionless time (At/D) 
should remain unchanged (to first-order accuracy) provided these 
five groups remain constant. 

* This reduction from.eight to five dimensionless groups 'is possible 
in part, because of the manner in which ll3, I$, II3, II2, and IIll 
occur in the governing equations. 
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, :. jr. AppEM)IXH’, ” :’ T 

First .C-rder Pe~rtuurbation Analysis of Constant-volume : 
., Balloon. Motion in Turbulent Flow 

The problem 
balloon floating in a 
stationary turbulence 
The coordinate system 

x3 

under consideration :'is a'constant-volume 
two:dimensionaJ turbulent flow field with 
which is homogeneous in the x-direction,' 
is shown in Figure H-l. 

Figure H-l. Coordinate System for First-Order Perturbation Analysis 
The longitudinal component of the wind velocity can be expressed as 

u1 (XjBt,Xg) = Ul (x3) + Ui (Xl,t,ig) (H-1) 

The fluctuating portion of the longitudinal component can be 
expressed in terms of a Fourier integral, ' 

B (k*u;x3)e i (kxl-wtldk dw 
(H-2) 

The coordinates of the CVB are functions of both time and the 
initial balloon position. Because the turbulence is homogeneous 
in the x-direction and the mean wind velocity is assumed to be 
constant with respect to %and t, only the x3-coordinate of the 
initial position is significant. Thus 

(Balloon Coordinates) = 
C xlwc&-jLX3(LX30) 1 . (H-3) 

The horizontal component of the'balloon 'velocity can be 
written as 

L 

(H-.4) 



Equating the horizontal component of the balloon velocity to the 
corresponding wind velocity component at the balloon location is 
based on the assumption that the balloon responds perfectly to 
the wind velocity in the horizontal direction, 

The vertical component of balloon velocity can be 
. written: 

ax3 vcJt,X3()) = at (H-5) 

Notice should be taken that v3 cannot be set equal to vertical 
component of the wind velocity, u3, because a constant-volume 
balloon cannot be perfectly responsive in the vertical direction. 

The balloon coordinates can be written as: 

/ 
t 

x1 (tyX3o) = 0 
v1 (LXgo) dt 

t 
= ii1 (x3o> t + / 0 

ui (Xl,t,X3) dt 

= x, (x3o, t> + Xi(t,X30> (H-6) 

and 

/ 

t 
X3 (LX,,) = o v3 (LX30) dt + X3o 

= xGJ wX30) + x3o (H-7) 

The fluctuating portion of the longitudinal component of the 
balloon velocity, Vi, can be expressed in terms of a Fourier 
integral analogous to that for the wind velocity component, Ui. 
Thus: 

Vi (t,Xgo) = V1 (t,X30) - 61 (X3) 

m a, 

= 
/s 

B (k,u;X3)e 
i[k(zI + Xi)-Ut] 

dkdw @+3) 
----ED-m 
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Expansion of B (k,w;X3) in a Taylor series about X3o yields 
, 

B (k,w;X3) = B (k,qX.-& + g I a% (x&o> + 3 --i& 'x$&-g2 + '-* 

= B (k,w;sO) + (H-e) 

Likewise the exponential series for e ikX' 1 can be written 

eq =l+ik xi- + (k X.i)2 + . . . (H-10) 

A combination of Equations (H-8) through (H-10) yields 
. 

+ikxp i @xi)2 + . . . ] e i'q - wt) dk do 

To first-order accuracy* 
aD m 

Vi (t,&) = Jf B (kW$O) e i(q4t)& d,,, 
a -00 

(II-.llj 

(H-12) 

In similar fashion the velocity component Vi (t +T , X3o) 

can be expressed to first-order accuracy as 

Vi (t + T,so> =lymm B(k,w;X30) ei Ck(%$ ') - Nt + ')I dk du(H-13) 

Because vi is real, the Fourier integral representation for 
Vi (t + ',x30) can be written as 

00 03 
I vi .tt + ~J&)> = JJ $(k,W$O)e -i [k(q + 5 'c) - w(t + 't)&k dW 

-m--m (H-14) 

* The first term in the series expansion of B(k,u;Z) is first-order 
because B(k,w;Z) itself represents a perturbation and is first- 

order: Thus the only first-order term in the product,B(k.w.z)eikXi 
.is tlie:P'roducti,of the first terms of the two series. , 8 
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The product vi(t,X30) Vi(t + T,X~~) can be expressed as 

Vi(t,X30) Vi(t + Tt'X30) ,'~ 

= / fw fw fw B(k',o';XQO) B*(k,w;X30) ei(k'X1-w't) 
-4-w-w 

e-i [k& + Gl T, - w(t + T>] dkfduldk du (H-15) 

Equation (H-15) holds for each realization of the ensemble. Thus 
the ensemble average representing the quasi-Lagrangian time auto- 
correlation function, can be written as 

<Vi (t,Xgg) "i Ct + r9'30)' 

= [ Lw [ % <B(k',w';X30) B* (k,w;X30)' 

.-i &(k'-k)-t(w'-w)] .-i(k cl 'I- tit) dk'dw'dk dw .(H-16) 

A more useful form of Equation (H-16) can be obtained by the 
following change of variables: 

k , , = k - k' 

w I I e &J - 0 

k' = k - k" 

&)' = (Jj - w" (H-17) 

Introduction of k" and w" in Equation (H-16) produces 

Vi(tpX30) Vi (t + tpx30) 

= /p) Jw Jw /m <B(k-k",w-w";X30) B*(k,w;X30), 
-4---w 

.-i(k 'qt, - W"t) e -i(k$ r-wt) dk"dw"dk dw (H-18) 
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The general Eulerian space-time power spectrum; 
'bE(k,'J','+t;xg), of the horizontal wind velocity Ui,(Xl,t,Xg) 

by definition is: 

<B(k-k",w4;x3) B* (k,w+) > 

e i(k”%-w”t> dk,,dw,l (H49) 

At the balloon coordinates (xl,: X3o) the general power spectrum 
of the wind velocity component ui (T,,t,X,,) would be .\. : 

<B (k-k",w-w";X30) B* (k,w; so,' 

e i(k"% - w"t) dk,,dw,, (H-20) 

For the case under consideration the turbulence is homogeneous in 
the xl-direction and stationary, and thus the corresponding 
Eulerian space-time power spectrum is not a function of ii, or t. 
For such a case, 

'$E (k,d$, t;&& -' % (k,w; so> (H-21) 
: 

A combination of Equations (H-20) and (H-21) produces 

e i(k"q - W"t) dk"do" (H-22) 

In order for the BBS of Equation (H-22) to be consistent with,the 
LHS 

<B(k-k",ww"' ,%o> BYkw;X30P = F(k,y;X30) 6(k") S(w") (H-23) 

where 

F (k,w;so) = < Wk,G30) B*(k,w;X30) ' (H-24) 
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A combination of Equations (H-'22) .through (H-24) yields 
', 

% (k,w.;l&) =LmLwF (k,w;K30) 6(k") B(w") ' 

, 
and 

i(k"q i w"t> dk,,dw,, e 

= F (k,w; so) 
(H-25) 

% (k,w;~O) = < B (k,w;K30) B* (k,M30) ' (H-26) 

The quasi-Lagrangian time auto correlation for stationary 
turbulence,with homogeneity in the x-direction can be developed 
by a combination of Equations (H-18),(H-23) and (H-25) as follows: 

(H-27) 

The LHS of Equation (H-27) must be independent of time because, 
due to stationarity the RHS is not a function of time. Thus, 

< Vi <t;so) Vi (t + T;X30) > -> % (=+30) 
(H-28) 

Thus the quasi-Lagrangian time auto correlation function for 
stationary turbulence, with xl-direction homogeneity, can be 
expressed as: 

% (T;%~) = fwfm k (k,w;K30) e -i(kE1- O)' dk dw 
-4 

(H-29) 

Equation (H-29) can be cast in a more convenient form 
by means of a coordinate transformation where 

K=k 
i-2 = kc1 - .w 
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The quantity (4) is the doppler frequency observed in a coordinate 
system moving with a velocity iil. In K,fi - space Equation (H-29) 
becomes 

ak ak 
% (T;&) = 1-c % (K,K% - Q;X30) e 4nr .= an dK dQ 

af.d af.0 
x an 

= f--c t$E (K, K% - Q;X30), e -" 
. ,: 

1 O' ilKd!i2 

v-l ..:- 

@E (K,Kq -Q;rSo) e -iQr dK dr;2 
'. (H-31) i 

At the same time, based on generalized Fourier integral theory, 

(H-32) 

where y (n;X30) is the quasi-Lagrangian time power spectrum. Thus 
by comparison of Equations (H-31) and (H-32), .'_, ./. 

t’E (K, 5 - “;%o> d i 
I. 

(H-33) 
2 ., 

Notice should be taken that Equation (H-31) represents a relation- 
ship between the quasi-Lagrangian time auto correlation function " 
and the Eulerian space-time power spectrum for stationary turbu-'i. : 
lence with x-direction homogeneity, while Equation (H-33) relates. 
the quasi-Lagrangian time power spectrum with the same Eulerian 
spa&e-time power spectrum. Both relations are based on first-, 
order perturbation theory. 

The true significance of Equations (H-31) and (H-33) can ,. 
be ascertained by applying them to' certain situations involving ' 
both nondispersive and dispersive media. First, in a nondispersive 
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media Taylor's hypothesis holds and thus, : . I 
W  =kE1, _ (H-34) 

or 
52 = 0 (A-35) 

For this case Equation (H-33) becomes' " / ..>k'. 

= '(" Lw 'E(TAyLlaR) (K;%O) IX (H-36) 

where QE (K,XQO) is the Eulerian space power spectrum.Equation 
(H-36) indicates that the quasi-Lagrangian time spectrum based 
on Taylor's hypothesis is simply a spike at R = 0. A combination 
of Equations ,(H-31) and'(H-36) yields 

HL(TAYTBR) 

(H-37) 

Notice should be taken that the RHS of.Equation (H-37) is inde- 
pendent of 'c. Thus the quasi-Lagrangian time auto correlation 
function is independent of T and 

HL(TA~) (% x30) = HL(TAWBR) (X30) (H-38) 

Equation.(H-38) combined with Equation '(H-28) indicates that 

HL(~~-) (so) = < “i (x30) vi (so) ’ 

2 
u = v1 (x30) 
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Based on Equation (H-39) the quasi-Lagrangian time auto correlation 
function (for the case of Taylor's Hypothesis), for the balloon 
velocity component Vi(t9X30)f equals the variance of the same 
velocity component. The latter in turn equals the variance of the 
ycomponent of the wind velocity. These relations are based on 
the first-order perturbation analysis with the assumption of,a 
perfectly responsive balloon (in the x-direction) with stationary 
turbulence which is homogeneous in the x-direction. 

For the case of a dispersive media, Taylor's hypothesis 
does not hold. Instead 

or 

- w=u 1 k + F.(k) (H-40) 

n = - F (K) (H-41) 

The inverse of Equation (H-41) proves more useful and can be 
written 

K= 

A combination 

*L(DI3PERWE) 

f (Q) (H-42) 

of Equations (H-33) and (H-42) yields 

(';%I) = Lw C&DISPERSIVE) W,Kq -W$o> do 

W 

= 'E(DIS%WVE) (K;X30) 6 [f(Q)-K] dK 

= !E (DISE'ERSIVE) Cf m;~ol (H-43) 

Thus'in 'a dispersive media the quasi-Lagrangian time power spectrum 
can be related to the corresponding Eulerian spatial power spectrum 
if the function f (S2) is known. Furthermore, the quasi-Lagrangian 
time auto correlation function can be related to the same Eulerian 
spatial power spectrum by a conbination of Equations (H-32) and 
(H-43) as follows: 

(H-44) 
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I  ,  

; .  

For  d ispers ive  Rossby  waves  th e  p h a s e  veloci ty c is 
g iven  by  th e  re la t ion 

C  =  6 1  -  B /k2 

B y d e fin i t ion 

c =  w /k 

a n d  thus  

(H-45)  
,, ;,< .:.. : Y .. 

.i , ;., ".-. e  ,. :- : . ,(B A 4 8 )  

_ .- , 
W =  i i1 k -  B /k 

1  (H-47)  

o r  ; ! 
n  =  B /k (H-48)  

Thus  fo r  a  Rossby  w a v e , b a s e d  o n  E q u a tio n  (H-42)  a n d  (Hi4,8),  

T h e n  

f(RO S S B Y ) (*) =  8 1 9  (H-49)  
.I 

(H-59)  

T h e  re la t ion  b e tween  4 .E(RossBy)  (K i  X 3 o )  a n d  K  is k n o w n :to  b e  o f 
th e  fo r m  

"  E (RO S S B Y ) ( K 'X 3 0 )  =  K  P l (H-51)  

w h e r e  

P l < o  . 
The re fo re  

*; L (  R O S S B Y )  ( % X 3 0 )  a  Q  'P l 

For  d ispers ive  gravi ty waves , 

Thus , b a s e d  o n  E q u a tio n  (H-42)  a n d  (H-54) , 

f(G R A V ITY ) (*) =  n 2 /g  

(H-52)  

(H-53)  

(H-54)  

(H-55)  

1 2 0  



r\ -i 
I 
: 

In this case 

2 
'L(GRAVITY)(n;X30) = ".E(GRAVITY) (* /gSx30) (H-56) 

The relation between kEtGRAvITY) (K,X30) and K is of the form 

%(GRAVITY) (KSx30) QE Kp2 

'where . : I . 
P2 <o 

Therefork 

(H-57) 

(H-58) 

‘. Rossby waves possess long wave lengths and thus small 
wave numbers while gravity waves have relatively short wave 
lengths and hence larger wave numbers. A plot of QE (K:,X30) 
for these two types of waves is given in Figure H-2. The 
corresponding plot of YL (S2;X,,) is shown in Figure H-3. 

' , ,\ -, 
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Figure H-2. Eulerian Space Power Spectra for 
Rossby and Gravity Waves 
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Figure H-3. Lagrangian Time Power Spectra 
for Rossby and Gravity Waves 
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APPENDIX I 

NOTES ON SPACE-TIME SPECTRUM $JE (k, w; XSG) 

The function I$, (k, w; X2G) represents the Eulerian 
Space-time spectral density at altitude XSG of turbulent eddy 
with wave number k and frequency w. If no relation between k 
and w exist, the general variation of I$ with k and w might be 
pictured as shown in Figure I-l. 

Figure I-l. General Eulerian Space-Time Power Spectrum 

If, however, k and w are related according to Taylor's hypothesis, 

w = kiil (1-l) 

'E(TAYLOR), as a function of k and w, appears as shown in 
Figure I-2. 
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kii, ; X3,,) 

Figure I-2. Eulerian Space-Time Power Spectrum According to 
Taylor's Hypothesis 

Notice should be taken that, with increasing ul, the plane con- 
taining @  E (TAyLoR) (k, ku -1; X3()) rotates CCW. 

For the case of dispersive media, 

w = kG1 + F(k) (I-2) 

For this case, +, as a function of k and w appears as shown in 
Figure I-3. 
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k 

SAWS41 

Figure I-3. Eulerian Space-Time Power Spectrum for 
Dispersive Media 

The preceding figure represents the general concept of the spectral 
density function for a dispersive media. Two specific examples 
are useful. For a Rossby wave, 

w =kiil- k u-3) 
I  

Although Rossby waves are limited to relatively low frequencies, 
and thus low wave numbers, it is beneficial to picture the 
variation of $ E(ROSSBY) with k and w over a wide range of 
values of k and w as shown in Figure I-4. '; 

.’ 
; 
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#E (0xX30) 

w= kii, - Plk 

Figure i-4. Eulerian Space-Time Power Spectrum 
for Rossby Waves 

Notice should be taken in the preceding figure that the heavily 
shaded portion of the plots of Q E(ROSSBY) (k' k"l - 'jk; '30) 
represents the regions where Rossby waves would most likely be 
present. 

For gravity waves 

w = elk+ & (1-4) - 

Gravity waves normally occur at relatively high values of k, but 
as before it is beneficial to plot the curve over a range of values 
OP both k and w. The result is as shown in Figure I-5. 
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, k, kc, - a; 

w= kii, 

Figure I-5. Eulerian Space-Time Power Spectrum 
for Gravity Waves 

As before the more heavily shaded portions of the plot indicates 
the part of the spectrum in which gravity waves most likely will 
occur. 
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APPENDIX J 

Notes on Space-Time Spectrum JIL (K, Q;.X,,) / 
‘i 
i 

I t  is desirable to introduce a two-dimensional space- , :,, 
time spectrum'$L (K, R; X3o) which satisfies the relation ,, ,_ 

s 

03 
IL (fl; X3o) = JI, (K, Q: X3o) dK (J-1) co 

The function $L (K,-G!; X3o) is the counterpart of 9, (k, w; XSo). 
Each of the five figures given in Appendix I could be redrawn to 
represent $L (K, Q; X3o) as a function of K, s1. For the sake 
of brevity only the three specific cases, illustrated by Figures 
I-2, I-4 and I-5, will be developed. , 

For the case involving Taylor's hypothesis, 

n 0 = 

I#, as a function of K and 52 is shown in Figure J-l. 

(J-2) 

?i ’ ‘sALm44 
. :; 

Figure J-l. Lagrangian Space-Time Power Spectrum 
According to Taylor's Hypothesis 
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A comparison of Figures I -2 and J-1 reveals that as 

u1 approaches Nero, # L (TAYLOR ) (K, -Q; X3o> approaches 4-E (wYLOR ) 

(k, u; x3o). 

For the case involving the Rossby wave, 

n = B/K (J-3) 

or 

K = B/Q (J-4) 

The variation of $LCmSSBY) (K,Q ; X3o) with K and Q is shown in 
Figure J-2. As'before the more heavily shaded regions indicate 

Figure J-2. Lagrangian Space-Time Power Spectrum 
for Rossby Waves 
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that portion of the spectrum where Rossby waves are more likely / 
to occur. A comparison of Figures I-4 and J-2 indicates that as 
ii1 approaches zero, Jr (K, L(ROSSBY) , - a; X3o 1 approaches + E (Rossgi ) 
(k, w; X3o) :/' '. 

In addition, inspection of the shaded portion of Figure J-2 .' 
rexeals that in that portion of the spectrum where Rossby waves 
occur, $ L(-ROSSBY) increases with increasing R while, as.shown 
in Figure I-4, 9 E(ROSSBY) decreases with increasing k. This 
provides a slightly better understanding of the relationship 
between @  E(ROSSBY) and vL(ROSS~~) which was originally presented 
in Appendix H. 

For the case involving gravity waves, 

51 = i 4K (J-5) 

and 
n2. K= - 

g (J-6) 

The variation of $-L(GRAVITY) (k, R; X3o) with K and fi isshown '. 
in Figure J-3. 

The more heavily shaded portion of the spectrum represents the 
region in which gravity waves normally occur- Comparison of ..> .,; 
Figures I-5 and J-3 reveals, that as ii, approaches zero',.,$-L(GRAVITY) 

(K - Q; Xso> approaches 9 E(GRAVITY) (k, w; X3o). Furthermore, 
although difficult to determine quantitatively from Figure I-5. and I. 
J-3,it is possible to observe qualitatively that +L(GRAVITYj'.. 
decreases more rapidly with increasing R than 'E(GRAVITY) decreases 

wit.h increasing k. 
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SAI-0945 

Figure J-3. Lagrangian Space-Time Power Spectrum 
for Gravity Waves 
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/ 

APPENDIX K' 
/' 

Source Listing for BALLOON Program 

Balloon is written in FORTRAN IV for the Univac i108 
Computer. The listing which follows represents the current 
form of the program. 

: 
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GiJ TO 2 
1 Bm-A.K1*.5/U2 

C-0A*Kl*.S/K3 
2 Cob~TltvUE 

wRITti(6.9004, A.8.C 

9004 Fo~MAT(///I~X,~P~EIZ.~, 
UCON - Uecl,/A 
Do 1GOl Ll-1rNtuN 
HEADIS,lOl, XO~~,.~~~~,.BCD~~~~~,~~CXXI~~,TTTT~MH~ELTATT~~~T~~~~~ 

101 FOK~ATL~E~O.~,IOX.~A~~~X~~F~~~~~~~, 
TRF = T 
TRLIM - TLIM 
K(l) - XDIZ,/D 
K(2) = K(1) 
K(3) * K(I) 
OMEGA - XD(S,Ol/D ,- 
ETA = 1 .SE’3C 
DO 10 l-,1.3 
K(l) = AMAX~IK~I).FTA, .’ 

10 CONTINUE 
CALL GEOMET . . 

CALL PROPTY(X1 
GR = -G(3) 
GAM - GR/ft/4.,&4E+7 
X0.( 1 J. - (12.*Nu,/tr*Dl 
X0(3, t .~~~~~~~*GR~OOD~~GAM~TE~LAP~~~A~A*TE~P~, 
X0(4) - UCON 
WR1TE(6,9015, ~CD~~ll,.BCOX~12~.~r~~L2,,L2=l~5l 
YRITE~~,INPUT) 

9015 FORMAT(lHl,25X.*TEqT CASE*2Ab//’ DIHENSIONLE~S GROUPS’//’ [*7-‘lPkl 
12.41’ N8-*E12.4/ ’ Iu9-‘E12~4/’ rq1SmwEli.4/' NIA”EiZ.4) 

CALL ~DENT (8.1, 
DO 1002 LS - I.105 
IO - u 
10x - 0 

5 CALL INTEG~T,V.X,D~LTAT.lDT, 
DO 200 I = lr3 
Fu(1, = u(I)/A 
FV(I) = viI)/A 
VOU(I, - V(ll/U(I, 

200 CONT I NUE + :  I  

AKT - Aa~tl)*T 
DZ - at3, - r3n 
10 l so + 1 

IOX - IOX + 1 

PX(IDX, = X(1, 
PY(IDA, - X(2, 
P2113X) = D2 pwi0x) I FU(I, 
PyZtiUX, I FU(p, 
PY3(iDX, = FU(3, 
P2l(li~xb = FV(l, 
PzZ(IOx, = FV(P, 
PZJ(IOX, I FV(3, 
WRA(IO,L, - 1 
Y~13(13,1, - T 
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URC(lDtl) - T 
WRA(IUDZI = AKT 
WRB(lU,Z) = AKT 
WHCtlD,ZI = AKT 
PT(lbX) - AKT 
wRBtiD.3, = X(1) 
WRtd(ID.4, - X(2) 
WRb~iD;5, - DZ 
RRB~IDv6) - RE 
DO 363 I-lr3 
WRA(IU,l+2) - F’U(II 
fiRA(I~tl+5) - FV(l) 
WRA(ID,I+B) - VDU(l, 
WRC(lOoI+2) - FDRAG(IB 
WHC(IDtl+5) = bAPI(r) 
WRC(IU~l+8) - FAP2(1) 
HRC(lD,I+ll) - FBlJOY(1, 
WRC(IUII+I~) - FEAsS(I) 

300 CONTItuUE 
IFlID - 501 375.30t.302 

302 CONTIIUUE ,. 
kRlTL(6.9002) 
W~iTE(6.9303) ~(~R~(l~J~~J-l~ll)~I-i~~Ol 
ivHlTE(brY008) 
WRlTE(6rYU09, ~~~~R~~irJ,~J-l~6,rl-‘I;SO~ 
1KlTE(6,9006, 
hHlTE(6.9007) i~WRCIl,J).J-1,17~.I-l.5~~ 

9002 FOHMAT(*l  TIME SCALED TlllrE SCALED ATNOSPHFRIC Wl’ND’ 
1SCALE.O BALLOON VELOCITIES VELOCITY RATIOS*//) 

9003 F~RMAT(~X,OPFB.~~~P~OEI~~~, 
9008 FOKMAT(‘I TIME SCALED TIME X Y 02 

I’//) 
9JOY FOKHAT(lx,~PFd.3,1pSEl~r3) 
9QO6 FoRMAft’ TIME SCALED TIME’ FDHAG/ti’nUo$ 

1 FAPI/FBAsS FAP~‘//, 
91307 FoR~AT~lx,OPFE.2,1pl~Ell.3/2Ox~l~6E~l~3~ 

lo - 0 
305 CONTINUE 

IF(T~LT.TLIM) GO TO 5 
XL - A*K(I)*TRF 
Xl? = A*K(I)*TLlM 
ra = 8.8 
VT - 11.2 _, 

CALL ~U~K~L~-~,XL.~R,YR,Y~~~H*~DC~X’,BC~Y~~~~D~.P~,~Y~~ 
CALL WU~K~L~C,~L,XR,Y~,YT,~HO,~CUX.QC~Y~~-~~%,PT~~Z~~ 
Yb = -1.5 
YT = I-5 
CALL wUIK3L(-l.XL.XR,Y&,YT,l~+,~C~~X,8c~Y2,~l~X.PT,Py2J 
CALL WUIK~L~O,XL~XR,YB,~T,~HO,~CUXIBCDY~,-IDX,PTBPZ~~ 
CALL ~UIK~L~~I.XL,XR,YB,YT,~H+.~~~X,~~~~~.~~~X.~~~~~~~ 
CALL OUIKJL~O,XL,XR,YB.~T,,H~,~C~X,BCDY~.~~~~.PT~PZ~J 
CALL ~U~K~V~~~~,HO.RCDX,FLDY~,-I~X.PT.PY~ 
CALL OUIK~V(-~~~~~.RCDX,FL~Y~.~IUX.PT~P~~ 
TRF = T 
TLIM - TLIM + TRLIM 

1CGZ CONTINUE 

RE 
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CALL ‘ENDJOB 
T - 00 
X(1) - 0. 
X(2) - 00 
A(3) -x30 
W(1) - UliCl, 
vi21 - lJat21 
V(3) - UBl3) 

1001 CONTINUE 
STOP 
EN0 

SUt3t?OUTtNE ACCEL~T.VI,XI~OVOT~DELTAT~S~ 
COMHON/CONS/PI.DISIGHA.AP~M. VOL. 

.HuREF ,TEHnEF, TEHPO,TEMLAP,X~O,RIGSKTL.G~~~.P~.X~~ 
COHMoN/T~KMS/F~RA6~3~,FAPl’~3~~FAP2~~~.F9UOy~3,~F~ASS~~3~, 

l MA,NU,MU,RHO,T~HP,x~3~.FACTOR 
CoMHON/vELOC/U(3~,v~3~,~JHAG,vMAG,HAG~~F 
REAL HmLeK 
REAL MA,Nu,MU,HUREF 
REAL HAGOIF 
REAL HLFF 
OlMENSlON Vll3),X1~3~rOvDT~31 
CALL PROPTY~XIJ 
CALL tbUOyNT 
CALL APARNT(T,xI~Vl, 
VMA6-SURTlVlfI~**2+vl~2~*~2+VI~3~~*~~ 
UHAG-~ORT(U(~)**~+U(~)O.~+U~~)*~~, 
SUM-O. 
00 5 l-1.3 

5 SUM-SUH*tVltl,-U(I),**2 
HAGDIF-SOKT(SUM, 
CALL DRAG(V1, 
B-FACTOROSORT(UELTAT*S) 
MEFF-H+MA . 
Do lir l-1.3 
DVOT~~~-(FDRAG(I~+FAP~(,~+FAP~~I~~F~UO~,~~+FB~FS.~~‘~‘~~/~H~FF+~~ 

10 CONTINUE 
KETUKN 
END .I 

:: 
,.. 
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SUaRUUTINE APARNTLT.XI.VIJ 
DIMENSION XI(3JrVII3J 

C THIS ROUTINE CALCULATE FORCES RFS.ULTING FROM APPARENT MASS AND FLUID 
COMMUN/CON~/PI,DV~IG~A.AP.M. VUL, 

l HUREf aTEMREF# tEHPO.TE~LAp.X3~.R.GSkTL:G,3J.~P~,~3,3 
COMMON/TEAMS/FDRAG~3)rFIP1(J)rFAP2~3J~FBUD~~3l.F~AS~~~~. 

*MA,NU,MU,RHO,TEMP,x~3J.FACTOR 
cOHMON/VELOC/U~3JrV(3J.UMAG,VHAG,MAGD~F .’ 

, 
., .I 

COMMON/DERV/PDUDX(.?,~J.PDUDT~~J 2 
COMHON/TiME/N .< ._ T 
OIMENSIOk DUDTF(3J : 
HEAL MBLIK 
REAL MA,NurHU,MUREF 
REAL MAPMRS 
REAL MAGDIF 
MAPMHs=MA+n*RH~/sIGYA 
XI3 = XII3)- X30 
CALL POTFLlJ~T~XI~IJ,Xf~2J,XI3J 
Do 11s I-1.3 
UDUDX-DVAL(U,O.,IJ 
DuDTF ( 1 J-PDUDT ( I J +IJDUDX 
FAPI~IJ=MAPMRSODUDTFO 
fAP2(1J = MA*DVAL~vIrlJ.lJ 

lo CONTINUE 
RETURN 
END 

SUBROUTINE BUOYNT 
CDMMON/CDNS/PI~D~SIGMA.AP,M, VUL, 

l MUREF , TEMREF , TEMPO.,TEMLAP,X~~,R,GSNTL~G(~J,PD~X~~ 
cOM~ON/T~HMS/FURAGf3~rFIP1(3)rFIP2~3~,FAP2~3~.FBUOy~3J.FbASS~3J~ 

l HA,NU,MU,RHO~TEMP.X~.FAC~OR 

REAL MILIK 
REAL MA,Nu,MU 
REAL MROSfG 
HRD~I~=H~L~.~RHO/SIGMAI 
Do 10 Irl.3 

IU Ft3UOY(IJ-G(IJ+MROSIG 
RETURN 
EN[! 
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SUtbRUUTINE DRAcq(VI J 
C~HHO~/CONS/PI~D~S16HA~Af~M~ VUL. 

d4clitEF~. TEMRE F , TEHP~.TEMLAP,x~~,R,GSRTL~~~~~~~~O~X~~ 
CDMMON/TEHHS/FURAG(~J,FA~~~~~,FAP~(~J~FBUO~~~J.F~AS~~~J~ 

l ~A,NU~H,U~RHO~fEHp~X~3J.FA~~OR~RE 
CDM#3l~/VELOC/U(3J,V(3~.UHAG,VMAG,HAGDIF 
Dlf lENSION RTABL(BJ.REN~B) 
OXHENSION VI(3J 
REAL f’trL,K 
REAL MA,NUIMU,MUREF 
REAL HAGOfF 
DATA HTAaL/7~74O66.5~29a3.3.13549~1~5~~~953l~~.493147~ 

+~~.237~7,~.544727/.NREN~8~,EP~~.~~~,REN~~4.60~~,~2~3~2~,0.~ 
l 2.3ct26~4.6U52,6.9~7~.9.2103.11~5I29; 

C 
HE’ MAGDIF*n/NU 
REZ - RE + Io3LIE’Jn 

CD - 24./REZ + 0.50 
VIl-VI(I) 
vIz-vI(2~ 
VIJ=VI (31 
HALFHO-.5*RHO 
CDAPtlD-CDoAP*HAGDIF 
HAC3=HALFRO*CDAp~O 
00 IS I-l.3 
FDHAG(IJ-HACD*~U(IJ-VI(I)) 

10 CoNTINUf 
RETUHN 
EN0 

FUNCTION DVAL(L.Z,IJ 
COHHDN~DEi+V/pDuDX~3,3),pOUDTo 
OIHENSiON *(3J,Z(3J 
DVAL-0. 
DO 10 J11.3 

1G DvAL=~VAL+(L(JJ-Z(JJJ~PDUDX~I,~J 
RETURN 
END 
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SUdRirUTINE GEOHET 
C THIS riOUTINE CALCULATES TIME INDLPENDEbT GEOMETRIC ,:V.ALUES 

COHNON/CDNs/PI .DtSIGk+A.AP,H, .VOL# 
l MuREF .TEHkEF, TEMPO,.TEHLAP,X3~rR~GsHTL,Gf3~.P~~.X33 

REAL MIL~KDHUREF 
vOL=PI*D..3/6m 
fl=VOL*sIGMA 
AP=PI~Oa.2/4-.9. 
IFITEHLAPj 10120rl0 

l@ CONTINUE 
.’ .: 

GSHTL=~BS(G(~))/(ROTE~LAP~~~.I~~E+~ 
GO Tb 30 

20 COIJT I NUE 
LSRTL-ABS(G(~~)/(H.TEHPO )/4.164E+7 

30 CONTINUE 
RETUHN‘ 
END 

SUBROUTIkk INTEG(T.V~X.nELTAT,IDTb 
DItlEN510~ X~3J.V(3JrDVlf3JrDV2~3J.DV5(3)r 

l V~~~~~XI~~~~DVDT~~J,DV~~~~ 
DIHE~NSIO~J DXl(3J,DX2(3J,DX3~3J,DXY(3).DX5~3)~Ef3).~X~3J 
COHHON/TIrdE/N 
DATA ACCuR/lr/ 
00 2uOO Ll-1mIuT 

3 CALL ACCEL~T~VrX~D~DT,D~LT~T~l~~ 
4 DO 5 1-1~3 

Dvl~I~=DELTAToOVDT(IJ~3. 
DX~(IJ=DELTAT~V~IJ/~~ 
vI~I~-vtl)+ovI~I) 

5 XI(I.)=X(I)+DXIII) 
CALL ACCEL(T+DELfAT/3..VI,XI,DVDT.DELTAT~.3333333333~ 
Do 4 l-l.3 
DVZ(I)=DELTAT.DVD.T(1)/3. 
DXZ~IJ=D~LTAT*vI~IJ/3~ 
VI~IJ=V~IJ*.~~~JV~(IJ+.~ODV~~IJ 

6 XI(I)-X(I)+.~.UXI~I)+.~.DX~~I) 
CALL ACCELiT+DtLTAT/3 ..VI.XI,DVDT,DELT~ir.3333333333j 
UO 7 I-l.3 
Dv~(I~=DELTAT.UVDT~I)~~. 

DX~~IJ-DELTAT*VI~I~;~. 
VI~IJ-V~1J+0.375~Dvl~IJ~l.l25.Uv3~IJ 

7 XI~I~'X~IJ+0.375~~~l~Ij+l.l25*DX3~I~ 
CALL ACCEL(T+DELTAT/Z .,VI,xI,DVOT,~UELTAT,~5) 
DO B I-l.3 
DvYtI)-DELTAT*ovDTt!l/3. 
D#~~I~‘DELTAT*vI~I~/~. 
VI(I)=V(IJ*~.~~DVI(I~-~.~*DV~~~~+~.~*D~~~~! 
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8 XIlII=Xl.I)+l.5.DX1(1)-4~5.DX3lI)+6.~*DX4lIl 
CALL ACCEL~T~O~LTAT,VI.XI,DVDT.D~LTAT.~.) 
TEST-.0-O , 
DO Y lr1.3 
~VS~II=DELTAT*DVDT~I~/~. 
DxSlI)-DELTATovIlI)/3. 
~~1~*~~2rDV111I-~Y00V31~~+.8*~V411~~.1~’DV511~ 
Ex~I~=D.~~D~~~~~-.~.DX~I’I~+.~*DX~~II~~I~DX~~~~~ 

9 TEST=A,HAXI~TEST~ABS~~~I~~,A~S~~X~I~~~ 
IF~TEST.LT*ACCUR) 60 To IO 
WRIfEl6r1DOO) 

IOOG FORMAT~~~J~O~~H***ACCURA~Y TEST FAILFD IN INTEGI?ATIONI 
LO Do 11 1=1,3 

V11)-Ul1)+.5*0J111)+2.eDV411~+.5*DV5~1~ 
11 X~I~-X~I~*~~~DX~~I~+~~*DX~~I~+~~~~X~~I~ 

T-T+DELTAT 
2000 CONTiElUE 

RETUKh 
END 

RtAL F‘UNCTION f lREF(TEMP,HUKEFsTEMREF) 
REAL MURkF 
A=MuH~F*lTEMP/TE~KEF).*~.5 
8=1.5US*TEHREF 
C=TEMP+.S~S*TEMREF 
MKEF=A*R/C 
RETuKIJ 
ENS 



DV’~X*~*Kl~CoS2 
D’VDY-I~*K~.COSZ 
DVDi!-B*K3*COSZ 
DYDX=C*KI*COS3 

~~WDY=C*KZaCOS3 
Dti0Z=C*K3bCOS3 8 

PuDT-A+OMEGAICOSI 
DUDTI-B.OMEGAeCoS2 
DWT--C*OHEGA*COS~ 

2O CONTINUE ’ 
i fig TUHN 

END 

SudROUTINE PROPTYlx)) 
C THI’S ROUTINE CALCULATES TEMPERATURE ANU DENSITV FKOM 
C TABULATED FUNCTIONS OF aLTITUDC; (X(3) UR ALT). DYNAMIC- ’ 
C VISCDSITY,MU, AND KINEMATIC VISCOSITY~NU~ARE CALCULATED* 
C PREs!iuRE I PD I DYNES/CM*02 
C DENSITY l RHO - G~sjCo*3 

DIMENSION XI (3) 
CD~H~N/CONS/PI.D~SIGMAIIPIMI VI)LI 

l HuREF ~TEMHEF. TEMPO,TEMLAP~~~~~R.~SRTL.G~~)~P~~X~~ 
CoHHON/TEHMS/FDRAG(3~,FApl~3l, fAP2~3),fRuOY~3~.F~A5S~3~, 

l MA,N~,MU,RI~O,TEH~,X~~).FACTOR 
REAL MILIK 
HEAL MA,Nu,HU,nUREF 
HEAL MREF- 
TEHP=TEMPo~TEH~Ap*fxI~3~-X3~~ 
HU~I~KEF(TEMP,M~~REF.TEMR~F) 

1000 FOHMAT(I~X,~HTEMP=.E~~.~) 

200C FOkMAT~1ox,3Hflu=,~~D.4~ 
~F.(TEHLAP) ic,20,1n 

16 CONTINUE 
P-PC*(TEMP/TEMPO)O@GSRTL 
Go TU 30 

20 CONTINUE 
P = ~o~EXP(-GSRTL*lxl(3)-X3D)1 

33 CGNTINUE 
RHU=P/(R*TEMP)/~.~R~~+~ 
NU=ilu/RHO 
f’lA=VoL*RHO*.5 

100 ~D~MAT~//~OX.~~HPROPTY VAHIABLLSI 
230 FORNAT~fDx.5HT~~p=.E~C.4/loX,3Hx~-,~El~.4/~ax.~hx3o~,~lo.4/ 

*~O~~~HHU-,E~O.~/IOX.~HP-,E~O.~/~D~,~H~~R~L-,~~~.~/ 
rl0~~3~NU=rEIG.4/~~x.3HMA-.ElO.4/l~~X,2H~=,ElO.4/)OX,4HVOL=,~lD,4/~) 

RETURN 
END 
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APPENDIX L 

Samples for Blocks #l, #2 & #3 Outputs 

The sample outputs which follow correspond to Blocks #l, 
#2 and #3 Outputs which are described in Section 4.2. These 
outputs.are for the most part labeled and thus are self-explana- 
tory. Where three components of a vector are printed out, the 
sequence always corresponds to the order xl, x2, x3. 

L.l Block #l, Output (Sample) 

1*0060*U2 1.0000+02 1.00C0*02 

L.2 Block #2 Output (Sample) 
TEST CASETEST (1.1) 

DIMENSIONLESS GROUPS 

hr7+ 3.59149u4 
NE= 8~1681-G4 
No- 1.7317-33 
lVlO= 1 l 0000*01 
Nil= 8.16trl-03 
SINPUT 
G a .0000UOOOE+UO, 
X a l 90039000E+~0, 
K * .62631S36E-O5r 
THETA = rOOOOOOOOE+GO I 
uil a l 10003DJOE+04, 
3 I l 10000000E+O4, 
A I l 1000OOOOE+O3 
OMEGA - .6263ls3a~-oz 
SIGMA = .361494OOE-03 
0 * ;*I 3000000E+33 
MUREF - l 1706OOOOE-03 
TEMHEF = .273150OOE+O3 
T a l 0000uOUOE+~ci 
TLIH a l IuOo003cE+0s 
OELTAT - l ZSOOtJOOoE+0l 
TEMPO = l 21800003E+O3 
PO I l 226190OOE+~b 
TEMLAP = l 000GOOOOE+O0 
R a l 686000l30E-01 
x30 I l 11000000E+O7 

l 00d03n00k+nu, -.980665OnEb03 
l 00300000E+00, l 11003~00E+07 
.62831536E-05, .626315366-05 
. l2QODbcC~+o3, .24OOOCoOE+03 
.00G00003E*n0* .00d3090c!E+00 
.Od000nOOE*OO, l 00000030E*00 
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L.3 Block #3 Output (Sample - next four pages) 
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TIME SCALE0 TIME 

50.00 
100.00 
150.00 
200.1~0 
250.UO 
30n.oU 
350.UU 
~00.00 
1150.00 
500900 
550.00 
boo.nu 
650.00 
700.1~0 
7S0.r10 
800*00 
aSQ*llO 
909.ou 
950.110 

1000.r10 
1050.n0 
I loo.nu 
115o*ou 
1200.00 
1250.00 
1300.00 
1350.no 
1900.ll0 
1950.00 
1500.00 
lSSi.no 
1400.u0 
Ib50.00 
1700.00 
1750.0u 

~1800.00 
lB5o.nu 
1900.00 
1950.00 
2000.00 
2050*00 
21oo.uu 
21sn*flo 
2200.00 
2250.00 
23OO.OU 
2350.nO 
2400*00 
2450.00 
25oo.no 

3. HZ-02 
6.203-02 
9.tts-02 
1.257-01 
1*571-01 
I .MllS-Ul 
2.199-01 
2*5lJ-01 
Ze821-01 
3.1YZ-ill 
J.956-01 
3.770-01 
l(.OUS-01 
Y*39ll-Ul 
‘(.712-01 
5.027-01 
5.3C(l-01 
5.655-01 
5.969-01 
b.Z83-Ol 
6.597-01 
6.9ll-01 
7.226-01 
7.5’10-01 
7.85L)-o1 
8.168-Ql 
a.‘(az-01 
6.796-01 
9..Ill-o1 
9.125-01 
9.739-01 
I .005+00 
I l 037+00 
I rOb8+00 
l*lou+oo 
1i131+uo 
l~162+00 
I. 19Y+oo 
A .225+00 
I .297+uo 
I .2kut+l&l 
1*319+00 
I .351+00 
1.302+Jo 
1 .LL1q+oo 
l*‘IYS+OO 
I l *77+00 
I l 50ti+oo 
I .539+oo 
1 l 571*oo 

I rou3+01 
I l Ilu)T*Jl 
l.UIl*UI 
I.uI1I+Ul 
1 l 01a*o1 
I rJZl+ul 
I .025*31 
I .oLP*oI 
1 .u32+01 
I *o3b+ul 
I l u4u+u1 
1 l 094+01 
I .u4a+01 
l.u52+01 
I .oLab+ul 
I .obJ+Lll 
I l Ub’l*Ul 
l*0ba+lJI 
l*O7I+Ol 
l.o7S+ul 
I.U78+01 
I*OL)I+ul 
1 l OtlS+Ol 
1 .oe7*01 
I .u9J*Ol 
I .U92+Oi 
I .OY’l+ul 
I .uYb+ul 
1*u97+01 
1.098+01 
I l 099+oi 
I.l(ro+ol 
1.100+01 
I.lJu+O1 
l. luO+OI 
1.099+01 
I .u99+01 
I .09(1*01 
I .097+u1 
1 l 09s*u1 
I .09’1+01 
I .u*2+01 
I .OPu+Gl 
1 .Odd+ul 
I l 00b+UI 
I .oa9+01 
I .082+01 
1 .oao+Ol 
1 l 07a*oi 
I .07b+Ul 

b.O87-31 
a.375-01 
b.b’15-21 
b.Py*-cI 
7.157-01 
7.‘135-31 
7.bYv-01 
7.Rdv-?I 
8.1Zv-31 
8.354-Cl 
a.57h-cl 
a.79p-131 
8.994-31 
9.185-01 
9.362-01 
9.521-31 
9.661-01 
9.7an-cl 
9.874-Cl 
9.9*(r-UI 
9.986-31 
1 l OO@*C? 
9.985-51 
9*vvo-31 
9.86h.01 
9.769-31 
9.627-01 
9.447-91. 
9.2dq-UI 

9.069-31 
8.834-31 
d.579-31 
8.335-cI 
a.c1v-al 
7.737-31 
7.3s7-01 
7.054-01 
6.713’01 
6.35(i-01 
5.99O’ll 
5.613-JI 
5.222-31 
Y.R3*-JI 
Y.Y60-91 
4.139-31 
3.759-Y I 
3.‘(22-‘)I 
3.097-Cl 
2.786-01 
2.487-01 

9.~62-01 
9.661(-31 
9.749-01 
9.821-@I 
9.882-PI 
9.931-01 
9.968-01 
9.991-01 
I .330*00 
9.993-01 
9.969-01 
9.925-@I 
9.861-01 
9.774-01 
9.663-nl 
9.527-31 
9.365-01 
9.175-01 
8.957-01 
.9.710-01 
8.436-01 
8.135-01 
7.UO8-01 
7.Y55-01 
7.!380-01 
6.683-PI 
6.261)-111 
5.R37-01 
5.392-01 
9.937-01 
v.v72-c1 
4.002-01 
3.528-01 
3.052-01 
2.575-01 
2. l@S-Cl 
I .628-Cl 
l.l58-01 
6.916-02 
2.279-02 

-2.354-02 
-6.99842 
-1.142-Ol 
-1.556-01 
-I .v4a-OL 
-2.319-03 
-Z.h69-Cl 
-2.~99-@I 
-3.308-01 
-3.599-01 

SC&LED BALLOON VtLUCITlEa 

I.o011*Jl 
1 .U07*\jl 
I.01 I*ril 
1.u1Y+ol 
l.O18*Ul 
l.u?l*Ul 
I .02s*o1 
I .029*1jl 
I.u32+~1 
l.o3b+LJl 
1*01I0+lJ1 
1.04’1+u1 
1 .u4a+u1 
1.052+u1 
I .osb+u1 
I.Obu+Jl 
1.06’(*51 
I .Oba+Cll 
1.071*u1 
1 .u75+Ll1 
1.07a+Ol 
~.Oat+ul 
I .085+*I 
I l OBI*UI 
1.090+ut 
I .092+01 
1*091)+u1 
1 .uvb+ul 
I .o97*u1 
I .u9e*u1 
I .099*ii1 
1.100+01 
I.Iou*uI 
1.105+31 
1.IOO+JI 
I .o99+01 
1 l 099*u1 
1*09a+UI 
1 .u97+01 
I .095+u1 
l.o911+jl 
I .u92+31 
I l u9o+u1 
1.08M*~l 
L .086+01 
1 .ue5+01 
1 .utI3*31 
I.URI*JI 
I .079*u1 
I .0774Ul 

5*9211-Ill 
6.3R9-01 
b*bbl-01 
6.919-01 
7.172’01 
7.919’Ol 
7.6~2-01 
7.9n2-Gl 
8*13*-U1 
8*3a5-01 
8.5n7-01 
a-.snl-Lil 
9.lYn3-01 
Y-lv9-cI 
9*3h9-01 
9.578-01 
9*b*7-01 
9.7A4’01 
9*17a-01 
9.9tib’Ol 
v*9Y7-ul 
I l ono+uo 
9.VUY’01 
9.037’OL 
9*(1lB1-01 
9.756’51 
9*672’Ul 
9.**0-Ul 
9.272’01 
9*OAO’Ol 
~*Il?5-111 
n.SbP-Ul 
e-294-UI 
8*onl’ul 
7*694-01 
7*372-01 
7.039’51 
6.699-01 
6.339’01 
5.973’01 
5*sv5-01 
5.273-01 
q.1118-ul 
Lc.l(ull-lj1 
9*127-01 
3.779-01 
3.*42-UI 
3.116’01 
2.ksn7-01 
2.5n8'01 

_‘. ‘,‘. 
.‘. :. 

5*a37-01 
U*3lY-01 
3.1176-01 
L..907-01 
L*9VU-01 
2.083-01 
1.769-01 
I .53d-01 
1.316-01 
Irl lY-Ol 
v.366-02 
7.638-02 
b.YbY-u2 
4.329-02 
2.693-02 
I rwi4-02 

-b.300-03 
-2.336-02 
-Y.U70-02 
-5.821,-02 
-7.590-02 
-9.367-02 
-l*Ikl-01 
-I.ZtIi-Ol 
-1 .‘IY9-Ol 
-l.!i97-01 
-1.736-01 
-1.8SV-Ol 
-1.9b3-ol 
-L*Ob-01 
-Ze091-01 
-2.12’2-01 
-2.115-01 
-2.012-01 
-1*990-01 
-1.nb1I-ol 
-l*6LI9-01 
-1.45d-01 
-1*157-01 
-7.555-02 
-1.5~1-02 

1 .a37-02 
-1.921-02 
-3.517-02 
-3.e7l-02 
-9*3L3-02 
-v.alJr-02 
-5.213-02 
-5m547-02 
-5.~13-02 

1.000+00 
I .0uo*0u 
1 l ooo+ou 
I .000*00 
I .030+00 
I .000+00 
L .000+00 
I .000+00 
I .000+OU 
1.000+00 
I .000*00 
I .000+00 
I .ooo+oo 
I .OJO+OO 
I .0lJ0+00 
I l 000+00 
I .000+00 
I l ouo+ou 
I .000+00 
I .ouU+ou 
I .ouu+ou 
I .000*00 
I .o00+0u 
I .000+00 
1 l ouo*oo 
1.000+00 
I .000+00 
1.000+00 
I. ooo+ou 
1 l ooo+oo 
l.000+00 
1 .ooo+oo 
I .00u+OU 
1~.0u0+00 
1.000+00 
I .000+00 
I l ooo*oo 
I .QCU*OO 
I .000+00 
9.999-01 
9.999-01 
1.090+00 
I .OUO*Ou 
I .000+00 
I .ooo*oo 
I .000+0u 
I .000*0(r 
I .000+00 
I .090+00 
1.000+00 

9.733951 LmIOY-Ok 
I l UO~+OO ‘1.449-01 
1.00~+00 3.51b’Ol.. 
I .u02*u0 2.9’10’01 
1 l OOL+UO 211)b9-01 
I l 002+00 2rO98-01 
1.002+00 I .791)-01 
I .002+uo 1.539-01 
1.002+00 1*318-91 
l.U0l+0u I*l20-01 
1.00~*00 9.394-02 
I .uOl+UO 7.b96-OL 
1.001+90 6*06r(-02 
I .001*00 4.429-02 
I .001*00 2.787-02 
1.001+00 1.096-02 
1.001*00 -b.728-03 
1*000*U0 
1.000*00 
1 .u00+00 -b.b91-02 
1.000+90 ~9+007-02 
1.000+00 -l.151-01 
9.999-01 -1.923-01 
9.998-01 -1.719’01 
9.997-01 -2.04)0-01 
9.99br01 -2.389-01 
9.9941Ul -2e770=0l 
9*Y9J-01 -3*1as-OI- 
9.992-01 -3.br(0-01 
9.990-01 -9.139’01 
9*98V-Ul -4.*90-01 
9.998-01 -.5.303-01 
9*9&b-01 -54995-01 
9.98q-Ol -6.789-01 
9.9113.01 -7.725-01 
9.9al-ul -8*873-01. 
9*v79-Ul -1 *O~~Q+OO 
9.977-UL -1.259+00 
9*v7*-Ul -1.473+00 
9*v72-01 -3.3lb+oo 
9*YbY-01 b.760901 
9*99a-01 -2.625-01 
1.002+00 l*bBZ-01 
I .Qu~+oo 2.298-01 
1 .OiJb+LkO 1.997-01 
1.0ub+00 I *(161(-Ol 
I *00**00 1.799-01 
I .007+00 I .730-01 
l.o07*Go I .677-01 
1 ruO8+00 1.615-01 

-2.5’14-02 
-l)*SY4-02 



TIME SCALED TIME 

5o.ou 3. IYZ-J2 

1oo.nu 6.283-02 

150.00 9.‘lZ!a-02 
200.03 1.257-01 
253.DU I .571-cl1 
3oo.nu 1 *d&85-01 
350.clJ Z.lPV-01 
40n.uu 2.513-01 
95O.OJ 2.d27-01 
5O!Y*OJ 3.1’12-01 
55o.uo 3.956-01 
bOO.oU 3.770-01 
bSO.00 ‘1.0&4-01 
7ou.ou 4.398-01 
75o.ou 4.712-01 
8OJ.OU 5.027.ul 
85n.00 5.341.01 

900.00 5.655-01 
950.00 5.969-01 

looo.uu 6.283.01 

105J.clO 6*S97-01 
1100.00 6.911-01 
1150.00 7.22a-JI 
1200.nu 7.540-01 
I253?00 7.854.Ul 
13oo.uo 8.168-01 
1350.00 a*4c12-01 
iqob.nu 9.796-01 
1456.05 9.111-01 
15oo.ou 9.L125-Gl 
155O*OU Y-739-01 
1600.00 1 .uo5+00 
1650.05 1 .u37*uo 
l7OJ.00 I .06d*oo 
1750.00 1*1c0+00 
1800.00 1.131~00 

1a50.05 li162*00 
1903.00 1.19~400 

1950.00 1.225+00 
2000.no 1 .L57+OD 
2053.00 1.2au+oo 
2100.00 1.319400 
2l5O.OU 1.351400 
2200.00 1.382400 
2250.00 1*~1’1+0U 
2300.00 1*~‘(5*0t 
2350.00 I l L(77400 
2qoo.no 1.5uu*oo 
2’(50.00 1.539400 
2500.00 1.5714DU 

A 

5*ijuP+JL( 
I .00’)*05 
I .5ua+05 
2.u15+05 
2.523+05 
3.033+05 
3*54L(+o5 
‘).05a*lJ5 
4.573405 
5.090+05 
5.659*05 
6.13D*uS 
6.653+J5 
7.17a*05 
7.7li5495 
11.23’1+05 
a*765*t5 
9.290+05 
9.a33+u5 
I .037+Ub 
1.091406 
l*lY5*U6 
1.199*~6 
I .253+06 
1.3Sa+Ub 
1.362+06 
1.‘117*06 
I .r172+06 
1.526*06 
1.581+06 
1.636+06 
1.691+06 
I .796+06 
l.aJl+ub 
I .85b*O6 
1.911406 
I .9b6+06 
2.~!21+U6 
2.376*06 
2.131+06 
2.1a5*06 
2.2‘tC+ob 
2.295+06 
2.3’19+06 
z.r);3*06 
2.*58*06 
2.512+CL 
2.566*06 
2.62G4U6 
2*6?4+u6 

Y 02 

2.372+C3 3.093403 
5.4754;3 5.580*03 
a.73a403 7.5lY403 
1.213+3’) 9.097403 
1*56a+U’( I .oqz*r9 
1.9304UY 1.I5S4U~ 
2.30740r I .252*09 
2.697+0’1 I .335+0Y 
3*09L1+04 1.406409 
3*5lD4U’( 1~.‘167+OY 
3*9344oL( I .518*oY 
4.369404 1.560*0‘4 
‘).a1r*04 1.5944011 
5.269+3r I .62O*O’l 
5.7334C4 l.b37+UY 
6.235+@4 1.6’17*0’( 
6.685*04 I. bYL)*OY 
7.172*Dr I .b’(O+O‘I 
?.66J+E4 I .625*011 
8.159404 1 .bOO*OY 
a.*5n*o* 1.566+0’4 
9*157*oL( 1.524*0’( 
9.657+0’4 I .c73*oY 
1.u1a405 1.913*04 
1.065+35 I .345*uY 
l.I11)*C5 1.269*0’1 
1.163+05 1.185*011 
I .2ln+C5 I .096+04 
1.257405 9.999+03 
1.303405 a.997403 
1.34~405 7.962+03 
1.3914c5 6.906*03 
1.‘133*c5 5.845403 
1.474405 qm79a+c3 
l.5134JS 3.7814C3 
1.551405 2.816*03 
1.5874’35 1.926*03 
I .621+C5 I .137403 
1.65V4il5 9.806+02 
1.685+05 -2.2Bl+co 
1.71’1*05 -2m’I29*02 
1.7Y1+05 ‘1.8854C2 
1.7bb+“5 -1 .A83+02 
I .7c)v*5)5 -3.372+02 
1.011455 -5.232*02 
l.R30+05 -7.269+02 
l.R48*05 -9.5’1P*o2 
1.065+05 -1.205*03 
l .BdC+OS -1*47r1+03 
1.89~4as -1.758403 

UE 

1.2’1’3*04 
1*77u+u4 
2*u71+39 
2*28’(*uq 
2.446+(i’i 
2*575*uY 
2mbA0+04 
2.7bb*U4 
2*u38+uY 
2.ava*Jq 
L.vr74uu 
2.907404 
3.019*04 
3*OY3+u4 
3.359+3’) 
3.Ub8+dcI 
J*07U*JY 
3mOb’k+u’J 
3.050434 
3*028+ijY 
2.998454 
Z.V60*09 
2.9I2*u4 
2.855+04 
L*709*bJ4 
2.712+54 
2.b25+,,4 
2.528404 
2.~19+uY 
2.300+J‘I 
2. I b&+,ill 
2  .OtY*04 
I .tlbB*U’1 
1 .b994b4 
1.516+3’) 
1*319*~L) 
1.l054ur 
8.727*03 
6. I72403 
J.286+03 
2.624*02 
i .9534u3 
5.176*03 
‘(.uo7403 
b.221*03 
bm313+J3 
7.326403 
a*294*J3 
Y.222*133 
1.011*34 

144 



TIME SCAl.ED TIME COHAG/F~UOY FAPI/FU&SS 

bO*OO 

.lnnto.o 

.isa.oo 

-2Oih 00 

25.6.00 

-300.00 

-350.00 

Aui.DQ 

..150*no 

.300*00 

550100 

3*1’)7.-02 

b~zurg2 

99925-02 

1.257-01 

1.571-01 

I .B85-01 

Z* 199-01 

2r51341 

2*827-al 

3*1’12-01 

1*456~01 

3~770-01 

4gna+0i 

9*398-Cl 

4*712-Cl 

Se027-el 

.5~*1~1 

5*655-Cl 

5*9b9rCl 

ba283-01 

lc597-Cl 

6.91 i-01 

JLzbSQl. 

It-54041 

-%*BSl(-Cl 

JLlhuu01. 

oc111)2-01 

-1*057*01 
O*COd 

-1r350iOI 

OICJO 
-i .sba+oi 

O.OUci  
-1~719tCl 

o*ouo 
-1 l a2ata1 

0~000 
-ie9aata1 

o*ato 
-1*965*tl 

O*OCC 
-2*0u’l*01 

0*00@ 
-2.027+01 

o*ooo 
-2~037+01 

a*000 
-2*033+01 

0*000 
-210ia+a1 

O*OOO 
-1~99l+ol 

o*ooo 
-1*952*01 

o*ooo 
-1.9C3+Ol 

o*ooo 
-1*943+01 

0*000 
--1*772+01 

0*000 
-1*492+01 

0.000 
-1*L03+01 

0~000 
‘1*506+01 

O*OCO 
-I*YOP+OI 

o*ollc 
-ie2a9+ai 

0*000 
-.-1r172+01 

o*ooo 
-1D051*01 

owa0a 
-9*275+0&I 

o*ooo 
-s.a3q+oo 

om00a 
-bc?9b*CC 

7.27k.+Gl 

U*rOC 
-9.145*c[r 

0*Llcr 
-i.1aq+C1 

C*@OP 
-L.267+Jl 

C.C@ll 
-1*303*01 

O*POlJ 
-1r318tCl 

O*OO@ 
-1.313+CI 

o.occ 
-1*291tCI 

o.ocr 
-1.251*01 

O .CO@ 
-1.207t01 

o*oon 
-I* 14mto1 

o*acrl 
-1 l 07&*01 

o.cco 
-9,986tCO 

o.ooc 
-9.1 lztao 

O.OCn 
-0.l5itao 

O*GOO 
-7.118toP 

0*0C0 
-6.03~+00 

o.aoo 
-L).894+00 

0~000 
-3.71ota~ 

0.000 
-2.52OtCO 

0*000 
-1.313*0@ 

0.000 
-1.125-Oi 

0.006 
i .064400 
O*OOO 
2.2OWO~ 
o*ooo 
3.279too 
0.000 
Y*28ot00 
o*ooo 
s~le9+00 

1.465t03 
-1.972tC3 

3.4ab*C3 
-3.551to3 

4.676t33 
-‘).774*03 

5.49a+03 
-5.773+03 

b.SY9+03 
-6.boato3 

7.269+03 
-7.31btO3 

7.aa3*03 
-7.922+03 

a.q09+03 

-a.**ito3 
8.861+03 

-fJ.887+03 
9.246+03 

-9.267*03 
9.571*03 

-9.587+03 
9.n40to3 

-9.852*03 
1.006+04 

-1.004+04 
I .022+04 

-I .022+04 
I.a33+04 

-I .c33+09 
I .040+0 

-1.039+04 
1.041*011 

-I .i34o+c’I 
I .036+04 

-I .035+@9 
I .027+04 

-1.025+09 
I .012+09 

-1.010+@4 
9.915+03 

-9..989ta3 
9.455to3 

-9.425+03 
9.340+03 

-9.305*03 
8.970+03 

-a.932+03 
a.s’Ilato3 

-1.5osto3 
5.077+03 

-5.029*03 
7.558+03 

6.236*g1 
Q.OOi~ 
a.Y93*l)l 
u .oac 
6.726+01 
a*000 
L*940*01 
C~anO 
7.131+&l 
a.000 
7.320+01 
0.000 
7.u03tGl 
U.Ol?CI 
7.627+01 
u.000 
7.748tol 
0.000 
7.8113+01 
o.oou 
t.9ou+o1 
U.ono 
7.940+01 
0.000 
1.935+01 
u.ono 
7*a89toi 
u.000 
7.799+01 
0.000 
7.663+01 
0.000 
7.‘170+01 
0; 000 
7.244+dl 
U.nOo 
4*940+01 
o.noa 
b.620+01 
il.000 
4*250*01 
0.000 
b.83u+OI 
0.000 
5.373+01 
cl.000 
1(+aa4+01 
0.000 
*.371+01 
o*ooo 
3.1\39+01 
ii.000 
d.?98toI 

4*9~1*01 
o*cnn 
5*015+01 
a*ono 
5.n55*01 
o*onc 
5*072+@1 
o*onc 
5*06b+Yl 
O*FflD 
5*@3Y+Cl 
09onc 
‘)*977+01 
a*l!nu 
~*&91*01 

o*ono 
q*773+51 
o*ono 
‘l*b73*01 
o*ono 
11*4?6+01 
o*ona 
11*213’01 
C*@t- lO 
3*950+01 
a*ono 
3*647+Ol 
O*onO 
3*3n4+01 
09OnC 
2*972+Gl 
U*OnG 
2*5n3+01 
O*CnG 
2*OSG+GI 
O*onc 
1 l 566+01 
O*OnO 
I l oSI+OI 
0*0n0 
5*2a9+0U 
o*ona 

-l*l60-01 
o*ono 

-5857.0+00 
O*bnO 

-l*inO+Cl 
o*ono 

-l*631+01 
O*Ono 

-20 145+01 
o+ano 

-2*633+01 

FAPL 

1 .tiLbtOI -5*cl21+00 -3,9Bb+OC -1 .Y70+00 
U*ClOG 
l+bi’ltol -be05a+0a -5.297+00 -1*741+00 
oeiroa 
1.50btol -a.a05+aa -b*Ul7+00 -1.793*00 
09OJU 
1.319tal -0i79’(too -b.Y27+00 -1*671+00 
O.UULl 
1~lll+Ol -9*369+00 -b.b4C+00 -1*455+00 
UIOOII  
u.7llt+00 -9.79r(+ao -6.737tCO -1*175+00 
o*oolJ 
b.ZIOtao -1.011+01 -b.72I+CO -8.387-01 
C*COO 
3.3bY+Co -1.032+01 -b.b2C+fJC -4*5&l-01 
O.UOU 
29blU-01 -I.Oqb+rJl -6.446+GO -3*390-02 
0*1100 

-3.151too -1.053+01 -be206+00 ‘lr230-01 
09000 

-b~UJttoO - 1’.053+Cl -5e90b+IJO 9.101’01 
o.oou 

I 

-I~uuu+oI ‘I .C’1btOl -5*55C;+CC 1 l 423+00 
(r*OOU I 

-1*503+01 -1*033+01 -5.14L(+ao 1 l 958+00 

U*OOG 
-1195C+ai ‘I .015+01 -4*690+90 2*609*00 

o*ooo 
-2aLLIYtaI -9.a99+00 -‘1.191(+00 3*070+00 

o.uurJ 
-2*9o’)+a1 -9.599+00 -3.659+00 3*636+00 

O*OOD 
-J*‘10Zt01 -9.2311+00 -3.091too l(r2Co+ao 

il.000 
-3.YUb+Ol -8.819+00 -2.99b+UO 4r754tao 

CIUCU 
-‘I**iu+ai -a.354+00 -1.880+00 5*293+00 

a*000 
-9.907*01 -7.042toa -1.251+00 5*aabt00 

0*G00 
-L*duYtOI -7.2t49toa -6.16*-01 b828’1taa 

o*oou 
-b*UYY+Ol -4.499*00 I .33d-02 b*721+00 I 

ir*oou 
-brL(lCI+Ol -6.080+00 6.303-01 7eLabta0, 

Cl.000 
-b.b75tal -5. r139+00 I l Ztb+aO 7*r(33+00 

lie000 
-7*or7+01 -‘(.786*00 I.7Bb+UO 7.695tOO 

O*bOll 
-7*3JZtOl -4.129+00 2.3Cb+OO 7eaa5+oo 

0*000 
-I.bl)b+al -3*Y77+OO 2.775*00 7.996+00 



i400.00 

1450.00 

160c900 

1550.03 

1600.00 

1650.00 

1700*00 

1750.00 

i800.00 

1850.00 

190~.00 

g 1950*00 

2ooo.no 

205o.no 

2100.00 

2150.00 

2200.00 

2250.00 

23Ob.00 

2350.00 

?400.00 

2’150.00 

2500.00 

L).796-31 

9*111-Cl 

P.YZS-!I1 

9.739-01 

I l 005+00 

l *O37+bO 

1.068+00 

1*100+00 

1.131*00 

1.162+00 

~1.191tQO 

1.225+03 

l .257+00 

i .zantoo 

1.319+00 

1*351+00 

i .3a2+00 

1*414+03 

1  l q4stoo 

1*‘)77+CO 

i .5oa+oa 

1.539tca 

1.571+00 

iJ*OGG 
-5*5aa+CC 

O.OQO 
-4*1)23*CO 

o*oclo 
-3.316+00 

3.00’) 
-2.299*00 

O.OGC 
-1.357+00 

0.000 
-5.366-01 

O.O’Jir 
i*4a4-01 
O.OUCl 
6.991-01 
a.OOc 
I .avo+oo 
0.000 
I .3cl9+00 
0.0ucl 
1 .336+00 
O.OdO 
L*14~*00 
O.OUO 
7.998-Cl 

0.000 
7.058-02 
0.000 
2. isq-02 

O.OG(l 
-6.078-01 

0.03G 
-1*2O2+0ll 

O.OGO 
-1.91~+00 

O.OOO 
-2.561+00 

0.00f1 
-3.1a1+Lio 

O.OCl! 
-3.799+00 

0.0CC 
-1(.42c+oo 

0.00l~ 
-5.0~3+00 

o.aCo 

o.al?r -7.507+03 
5.99ctcIt 6.998+03 
i l .CCO -6.942+03 
b.662+00 b.YOi+OJ 
a.coo -6.3YLt03 
7.196+cD 5.774+03 

o.oco -5.710+03 
7.575toc 5.125to3 

0.COF -5.057+03 
7.7a0+w 4.‘kbZ+o3 
0.00@ -4.390+03 
7*e21*3c 3.79stc3 
il.Qclll -3.719+03 
7.67o+C0 3.134+03 
O.OEO -3.055*03 
7.321tac~ 2.493+@3 
U.OCIl -2.*09+(!3 
6.761+00 1 .ea4+03 
0.000 -1.796+03 
5.982+00 1.322+03 
o.oco -1.229+03 
4.957tgc a.2q2+02 

0.000 -7.263+02 
3.bbt3tCo 4.128+02 
o.coo -3.870+02 
2.039tcc 1.177+02 

0.oor 1.495+00 
I.936901 -a.soa-01 
0.000 I .553+02 
2*SCl-01 -9.520+01 
o.ocr I .205+02 

-1*171+0C -I. 100+02 
O.CCP 1.204+02 

-2.332tGc -1.745+c2 
O.COl-! 2.156+02 

-3.553+0:, -2.953+02 
J.CZn 3.3’16+02 

-4.533t:‘o -Y.31(?+02 
o.oCn Y.&‘J9+02 

-5.37btCO -S.IPS+CZ 
0003C 6.107+02 

-b. l65+0C -7.420+02 
o.coo 7.710+02 

-6.923+01~ -9. i&3+02 
a.007 9*q32+02 

-7,.651+Co -i.1oo+c3 
o.oon 1. I 25+03 

ornor 
L*7544+ul  
o.uou 
2.2ib+ol 
(r.000 
1.689+01 
u.000 
l*ia2+Ol 

9.000 
6.979taC 

0.000 
2*43Y+00 

r).ooo 
-1.779too 

0.009 
-5.627+OQ 

0.000 
-9.o86+00 

0.000 
-1.2111+01 

i l.000. 
-1.477tlJl 

r).ooo 
-1.698+i)l 

0.000 
-L.R77+01 

u.000 
-2.013+01 

0.000 
-2.105+01 

ci.fJoo 
-i*l52+ul 

0.00G 
-2. ibO+31 

il.OOJ 
-2.13’)*01 

u.000 
-2.079+oI 

0.000 
-1.999tot 

0.000 
-1.900+31 

0.n00 
-1*784+Ci 

0.002) 
-1.655+01 

0.003 

@*on0 O.JOO 
-3.ona+51 -1*7kJ3+01 

o.ono umuuo 

-3*5nb+GI -?*PZbtQl 

c.ona O.UOU 
-3.an2+01 -t3.Olo+cl 

o.onu O.i)UY 
-q.2\ 1+01 -8.03vta1 

0.0n0 0.000 
-4.~92+01 -amoi2+o~ 

O.ono 0.00il 
-‘1.722+01 -7*932*Ql 

O.OnO 0.000 
-‘(.9n1+01 -7.8cZtC~ 

O.onO 0.900 

-5.039+01 -‘I.b2b+QL 

a.ono 0.0u0 
-5*lnb+Oi -7*407+Ql 

O.anO 0.000 
-5.135+01 -7.l~u+Ol 

O*onO 0.000 
-5.1 tb+ui -4ru53tQl 

c.onO U.l700 

-5.051+01 -b.‘s,Zb+ol 

0.0nC o.ouo 
-~.941+01 -4. LtJ9+01 

0.0n9 u.uuo 
-q*7a7+I;1 -5.7irzt01 

O.ono G.UOLl 
-‘(.5n9+ci -5.3bli+Qi 

0.0nO o.oou 
-‘(.363+Ul -4.953tci 

O.ono O.i700 
-~.120+01 -4.5’19+01 

- o.ono G  moue 
-3.862+01 -q. 155+01 
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APPENDIX M 

Initial Testing of Balloon Program 

In general according to first-order theory, the equation, 
for .a balloon in a stationary atmosphere can be written as 

(m f, ma,z + 2a v3 + N2x; = G1 Iv3 1 v3 + FB (M-1) 

In this equation, the vertical displacement from equilibrium is 
XI3 (=x3 -x3o). The mass of the balloon is m, and the apparent mass 
of the displaced fluid is ma. In general, for a spherical balloon 
displaced a small distance from equilibrium, (m + ma)/m=3/2. 

In Equation (M-l) CL is the linear drag and Gl is the non- 
linear contribution to the drag term based on the following approxi- 
mation for drag coefficient 

24 
'D = Re + 'DR (M-2) 

where CDRis a constant and Re is the Reynolds number (Re = Iv31) 

In Equation (M-l) the term FB represents the Basset force 
which arises in a transient flow at low Reynolds numbers. 

The buoyancy term N2 has been reduced to its linear com- 
ponent. Perturbation techniques used to evaluate the nonlinear 
contributions show that the first-order term contributes a modifi- 
cation of about 1 cm in 10 m to the amplitude of the oscillation 
and a subharmonic term of similar amplitude. These nonlinear 
contributions should be observed using a small time step and careful 
analysis. The perturbation technique cannot be used to solve the 
linear oscillator in general, as,the solution does not converge 
due to secular terms which arise in solutions higher than first-. 
order. However, the technique seems applicable here to determine, 
the order of magnitude of the nonlinear contribution since no 
resonance phenomena are expected in the unforced system. 
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’ I 

xn the first four tests respectively the follbwing simplifications 
were made:. 

(1) (m + ma)/m k.1, c1 = 0, FB = 0,' Gl = 0 1 
(2) (m + m ,)/m  = 1, cc # 0, FB ='O,, Gl = 0 : 
(3) (m + ma)/m 4'3/2, OL = O,- FB = 0, Gl = 0 
(4) (m + m ,)/m  4 1, c1 = 0, FB # 0, Gl = 0 ' ' 

For test case #l Ithe governing equation is the same as that for a 
parcel of air displaced from  its equilibrium  position in the absence 
drag forces, Bass.et forces, apparent mass forces and fluid accel- 
eration forces. W ith these simplifications the governing equation 
is 

dv3 e=- 
dt (M-3) 

where the terms  have their usual meaning, 

For the atmosphere, by means of the hydrostatic equation, 

o= 2% -g* 
3 

(M-4) 

The atmospheric temperature is assumed to vary linearly with alti- 
tude according to the relation. 

T  = To - y x3 (M-5) 

The temperature of the parcel is also assumed to vary linearly with 
altitude according to the relation 

T  
P  

=To -y 
P  "i 

As shown by Hess E1813, based on the four preceding equations 
combined with the ideal gas law, by first-order theory the oscilla- 
tion of the air parcel can be predicted. The period of oscillation is 

',2lT 
T  = 

J g/To (Y, -Y) 
(M-7) 

Normally yp is assumed to be equal to the adiabatic lapse rate, r .s ' 
and the resulting relation is 

'B.V. = Go 0, - Y> 

where the subscript B.V. refe'rs to Brunt-VZisZlZ. 
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As pointed out by Angel1 and Pack 11311, if y P is set equal 
to the constant density lapse rate, rp, (instead of the adiabatic 
lapse rate), the motion of the air parcel is the s&me.as thatof a 
constant volume balloon with a period of oscillation of 

TCvB = 
27.r 

J g/To (rp - Y> 

Now 

r = P -.0341 OK/m 

(M-9) 

(M-101, 
which is about six times larger than the lapse rate normally -.:: 
observed in the lower atmosphere. For the case of an isothermal 
atmosphere, 

= 10.85 T (M-11) 

Equation (M-11) closely agrees with the relation given by Lally [581. 

Now for the test case #l, with an isothermal atmosphere, 

Y 0 = 

and 

TO 
= 218OK 

the time period is 

'CVB = 160.20 sec. 

(M-,12) 

(M-13) 

(M-14) 

The balloon displacement as a function of time, based on the computer 
program is presented in Table (M-l). Inspection of this table 
reveals a time period of 160 seconds, in close agreement with 
Equation (M-12). 

For the case #2, the solution to Equation (M-l) is 

xi = Ae -ct cos At (M-15) 

where 

X = '(N2 -'a2)3 (M-16) 



TABLE M-l 
Predicted Displacement History of Constant-Volume 

Balloon in a Stationary Isothermal Atmosphere (Test Case #l) * 

rime step 
N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 ., 
15 
16 
17 
18 
19 
20 
21 

* Note: 

Vertical 
Displacanent 

x3 -x30(m) 

10. 
9.74 
8.93 
7.76 
6.12 
4.13 
1.86 

- .59 
- 3.14 
- 5.69 
- 8.14 
-10.40 
-12.38 
-14.00 
-15.21 
-15.95 
-16.20 
-15.95 
-15.21 
-14.00 
-12.37 

Time ,. 
t (set) 

0 
5 

10 
15 
20 
25 . 
30 
35 
40 
45 
50 
55 

6o . . 
65 
70 
75 
80 
85 
90 
95 

100 

- 

Tim Step 
-N 

VerticalI--= 
Displacement: 
x3 -x3&d 

22 -10.39 . 
23 - 8.14 
24 - 5.69 
25 - 3.13 
26 - .57 
27 C 1.89 
28 4.15 
29 6.13 
30 7.77 
31 8.99 ,: 
32 9.74 
33 10.00 
34 9.77 
35 9.05 
36 7.86 
37 6.25 
38 4.28 
39 2.02 
40 - .43 
41 - 2..98 

-Time 
t (set) 

- -~- ~_.__ 

105 
10 
15 
20 
25 
30 
35 
40 
45 

150 
55 
60 
65 
70 

175 
80 
85 
90 
95 

200 

An error in the balloon density places the equilibrium 
position at x3 - x3o z - 3 ma 
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'ime Step 
N 

42. 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

.z--=.- i_L.- --~ -a 

Vertical 
Displbmmt 
x3 - x3&9 

- 5.53 
-' 7.99 
-lo,27 
-12.27 
-13.92 
-15.15 
-15.92 
-16.21 
-15.99 
-15.27 
-14.09 
-12.49 
-10.53 
- 8.29 
- 5.85 
- 3.30 
- .74 
+ 1.73 

4.02 
6.02 

- 

TABLE M-l (can't) 

-. _ -.- _... 

Time 
t (set) 

205 62 
10 63 
15 64 
20 65 

225 66 
30 67 
35 68 
40 69 
45 70 

250 71 
55 72 
60 73 
65 74 
70 75 

275 76 
80 77 
85 78 
90 79 
95 80 

300 81 

The Step 
N 

Vertical 
Displacement 
X - x 35 4 

7.67 
8.92 
9.71 

10.00 
9.79 
9.09 
7.93 
6.34 
4.39 
2.16 

- .27 
- 2.82 
- 5.37 
- 7.83 
-10.11 
-12.12 
-13.79 
-15.06 
-15.87 

Ti.lTle 
t (set) 

SOS 
10 - 
15 
20 

325 
30 
35 
40 
45 

350 
55 
60 
65 
70 

375 
80 
85 
90 
95 

400 
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In the case studied, it was found that a2 << N 2 . 
period 

T 
0 

T = 

1 - T oAlTa2 
-u T 0 

where 

T 
0 

= 27T/N 

T a = 27-r/a 

Consequently the 
? . 

:j 

(M-,17 1 

'. (M-18) 

(M-19) 

(M-20) 

Hence, no change in this period was observed in the numerical 
solution due to the dissipation term. However, the amplitude 
damping in the numerical solution was found to correspond almost 

, 
exactly to the theoretical value. 

In the Case #3 test, it was observed that the period T 
given by the numerical solution corresponded closely to the first- 
order solution which required 

..- 

T = 
4 iz To (M-21) 

In the fourth test, the Basset force was non-zero, 

J t. FB a 
dv3/dt' 

0 
J t 

dt' 
- t' (M-22) 

No attempt was made to obtain a solution to the integral equation.. 
The results of the test suggested that the Basset term behaves 
like a term, of the form, 

FB = 2a v3 - b2x3 

leading to an equation of the form 

dv3 
dt + 2a v3 + (N2 - b2) x3 = 0 

(M-23) 

(M-24) 
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where the fundamental period was altered and the motion dampened. 
The oscillation was regular over two periods leading to the sup- 
position that 

a, b # f (~$1 (M-25) 

The value of "a" was of the,same order of magnitude as the coeffi- 
cient of the integral. However, "b21' was found to be an order of 
magnitude greater; 

b2 - 10 a W 10m2 (M-26) 

All of the preceding tests were conducted assuming an 
isothermal atmosphere with the natural period given by the relation 

T 
0 

(M-27) 

instead of the more general relation 

= = To gG- (M-28) 

One additional test case (#5) was run to ensure that y = 0 was not 
a special case. The period of this test case and the period obtain- 
ed from the analytic solution of the equation were again nearly 
identical. 
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APPENDIX N 

Results of Test Runs #6 - #ll 

Based on the numerical solution produced by BALLOON, 
the variatidk of the vertical component of velocity (for the wind 
and the balloon) versus time is .presented i&Figures N-l through 
N-5 fol' test cases #6 - $21. .,, . . . 
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Figure,N-1. Vertical Component of Velocity Versus Time, Test Cases #6 and-#7 
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Figure N-2. Vertical Component of Velocity Versus Time, Test Case #8 



TEST CASE 9 
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Figure N-3. 'Vertical Component of Velocity Vq-q.~s -Time, .Test Case‘#9 .- . 
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Figure N-4. Vertical Component of Velocity Versus Time, Test Case #lO 
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Figure N-5. Vertical Component of Velocity Versus Time, Test Case #11 



APPENDIX 0 

Analysis of Numerical. Results ,...Phase I (16 Ori.ginal Runs) =z -.1--c -.-. 

For each of the sixteen runs which were initially performed 
as part of Phase 1. a set of 6 position and velocity plots was 
generated. These plots are not included in the report because of 
the considerable bulk which they represent. They have'been 
collected and bound in a separate document [l].for reference purposes. 

For each of the sixteen runs special attention was given 
to the length of the time interval over which the numerical inte- 
gration was carried out. The time interval used along with the 
time period of the associated flow field are presented in Figure O-l. 

Figure O-2 presents the linear period, the observed period 
and the observed phase lag in the balloon velocity for the 16 runs. 
The wind is given by: 

u. = iii + A sin (k.x. - Ut + 'i) (O-1) 1 J J 

Based on the assumption 

X. 
1 

= iiit 

then the linear period is given by 

2lT T = k I"1 - cl 

since ki = k and ci= liibil, and 

(O-2) 

(O-3) 

is the phase velocity. The observed periods are taken directly 
from the data represented in Figures 5-4 through 5-6. 

In Figure O-2 values to the right of the principal 
diagonal represent cases where 61 > c and to the left where ii1 ': c. 
Of course, on the diagonal,61 = c,corresponding to Taylor's 
hypothesis. Off the diagonal the equation for vertical motion 
has the form 
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k 
-1 (cm 1 

\ 

Ill 
-1 (set 1 

6.28 x 1O-3 

6.28 x 1O-2 

z w 6.28 x 10-l 

6.28 

I 
NOTE: 

6.28 x lO-6 6.28 x 1O-5 6.28 x 1O-4 6.28 x 1O-3 

I 20000 
All.1 oD 

A21 1 
4000 

111 

1 600 

+I1 I 10.1 

I 80 
A4l il .oo 

I 4000 
*i2 

111 

I 4000 
A22 

I O" 

I 600 

k32 I 111 . 

I 80 
A42 1 1.01 

600 .80 
*i3 I I 

10.1 
A14 

I 1.00 

I 
600 

1 
80 

A23 1 11.1 A24 '..l . o1 

I 600 80 

si3 I m A34 ( 1.11 

A43 
I 80 I 

80 

I 1.11 A44 \ 03 

Associated with each element in the array there are two numbers. The top number. 
is the total time interval over which the particular.,case was integrated, and '. 
the bottom number is the linear period due to the forcing function. Both time 
periods have units of seconds. 

Figure O-l. Total Time Intervals and Linear Periods 
for 16 Original Runs of Phase I 



\ k (cm -l) 

w (set -1 
\ 

) 
. ..__ 

6.28 x lO-3 

6.28 x lO-2 

r-l 6.28 x 10-l 
ifi 

6.28 

6.28 x lO-6 6.28 x lO-5 6.28 x lO-4 6.28 x lO-3 

1 1.01 
*24 .\ ';"o; 

11.1 on 1:ll 
A32 11.4 1.23, 

(0) (7) (0) 

I 1.00 
I 

1.01 1.11 a, 
*41 I ;-E'S A42 1 l-O1 

(0) _ 
*43 1 1.10 *44 .I -. m 

(0) (?I 

NOTE: Associated with each element:in the array there are three numbers. -The upper 
number is the theoretical (lknear) period, the middle number is the observed-. 
period, and the lower number is the.phase lag. Positive values of the:phase- 
lag indicate the balloon lags of the wind. All values are in seconds. '. 

,, 1 

Figure O-2. Periods of Oscillation and Phase Lag . . "1 
for 16 Original Runs of Phase I \ 



dv3 - +2uv '. dt = C cos (k-x. - & + 6,) + G JJ (O-5) 

where the left-hand-side of the, equation & the usual' equation for 
a damped oscillator. The first term on the rightihand-side is the 
forcing.function due to the pressure forces where C'is assumed to 
be a constant, and G is a function which. is nonlinear in'dx3idt. 
If the-function G is neglected, 

," 
the balloon would be expected to 

oscillate with the period of the forcing function given by Equation 
:'(0-3). This expectation is borne out by the test case results. 
The largest observed deviation from the linear period occurs along 
the fourth column in Figure O-2 where the wave number is a maximum 
and not necessarily where p - 4 approaches a minimum. 

Along the-diagonal of the experiment matrix, the cosine 
of,Equation (O-5) becomes a constant. For these cases the oscill- 
ations should be expected to damp out as was observed in the A1l 
case. In these cases, the balloon approximately matc.hed the 
flow after the initial transient motion was suppressed and the 

'. forces balanced to hold it in this position. Thus for case 

A11 ' the balloon was observed to reach equilibrium about 120'm 
below its equilibrium level and, was observed to continue to 
have a lateral motion. This lateral motionpersists for longer 
time intervals, causing an ever-increasing lateral displacement 
of the balloon. Therefore, one would observe no vertical motion 
but a mean lateral motion. _ 

The vertical displacement typically displayed two.modes 
of oscillation. The'short-period oscillation corresponded to-the 
forced oscillation. The long-period oscillation resulted from the 
initial conditions and was found to be damped as expected. 

Figure O-3 shows case A31 where a Gery long total time 
interval for numerical integration was employed. This case clearly 
shows the damping in the transient mode of oscillation. 

.: 163 



0 DIMENSIONLESS TIME 220 

237 DIMENSIONLESS TIME 453 

465 DIMENSIONLESS TIME 666 
3AIa37.3 

Figure O-3. Run A3,-. Vertical Position of Balloon 
as a Function of Time. 
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APPENDIX P 

Analysis of Numerical Results Phase I - Cruciform Runs 

P-1 Cruciform C22 

Twenty-four runs were carried out in the Cruciform Cz2 
arrangement'shown in Figure P-l. The values of k and w for each 
run are given in Figure P-l. For each run; a set of six position 
and velocity histories are generated. These plots are not included 
in the report,because of the considerable bulk which they represent. 
Such plots have been collected.and bound in a separate document 
[ll for reference pusposes. 

Analysis of the numerical results of the 24 runs was 
primarily concerned with'comparing #the first-order theoretical 
time period with the observed value. The results of this compari- 
son are presented in Figure P-2. In general, as the conditions 
corresponding to A22 are approached along any one of the four 
branches of the cruciform the first-order theoretical period 
and the observed period agree less and less, with the observed 
value increasing more rapidly than the first-order theoretical 
value. This,:indicates that first-order theory,.which .fs linear, 
is not sufficient to predict the balloon motion under conditions 
where Taylor's hypothesis is (nearly) satisfied. 

P.2. Cruciform C33 

Twelve runs were carried in the Cruciform s3 arrangement 
as shown in Figure P-3. The values of k and LJ for these runs are 
presented in Figure P-3. As with the 52 runs, a set of six 
position and velocity histories was generated for each run. These 
plots have been collected and bound in separate documents 1 for 
reference purposes. 

As in the case of the C22 runs, analysis of the numerical 
results of the twelve runs was primarily concerned with comparing 
the first-order theoretical time period with the observed values. 
Figure P-4 provides a summary of this comparison. Inspection 
of this figure reveals the same trend as observed in Cruciform $2. 
Again, it would appear that first-order theory 4s not adequate to 
predict the balloon motion under conditions where Taylor's hypothe- 
sis is (nearly) satisfied. 
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Figure P-l. Values of i and'; for Cruciform Cz2 
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Figure P-2. Dimensionless.Time Periods for Runs in the Cruciform C22 .: '.. 
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